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RESUMO

Frustração geométrica é a incapacidade de satisfazer simultaneamente todas as interações
locais em sistemas de momentos magnéticos localizados, podendo levar a uma grande
degenerescência de estados fundamentais. Ainda que o sistema mostre ordem de longo
alcance a baixas temperaturas, a frustração deixa marcas indeléveis, que aparecem em
diferentes observáveis físicos. Um exemplo marcante é o processo de magnetização de um
sistema antiferromagnético bidimensional com geometria triangular. Aqui, colocamos esse
magneto em um campo magnético e estudamos como a magnetização uniforme evolui
com o aumento do campo externo até atingir o estado dito polarizado. Observa-se nesse
caso um platô de magnetização para uma faixa de valores do campo. Neste projeto
investigamos o comportamento de um modelo de spins na rede triangular na presença de
um campo magnético externo, incluindo flutuações térmicas e quânticas. Em particular,
a primeira parte do projeto será dedicada ao estudo do limite clássico do modelo de
Heisenberg antiferromagnético, onde os spins são tratados como vetores. Discutiremos a
curva de magnetização para temperatura nula e demonstraremos uma degenerescência
massiva no estado fundamental. Em seguida, consideraremos a introdução de flutuações
térmicas, que fornecerão um exemplo de mecanismo de ordem por desordem, levantando
a degenerescência. Isso será feito utilizando uma teoria de perturbação termodinâmica.
Entendido o caso clássico, trataremos agora do modelo de Heisenberg em sua versão
quântica para a mesma rede triangular, no regime complementar de T = 0. Isso será feito
utilizando o formalismo de ondas de spin. Como demonstraremos, esse método representa
uma expansão em uma série de potências de 1/S em relação ao equivalente clássico, onde
S é o tamanho do spin. Essas correções são o que entendemos como flutuações quânticas e
mostraremos que selecionam os mesmos estados que as flutuações térmicas, dando grande
robustez ao formalismo. Mostraremos a emergência do platô de magnetização e que sua
extensão é função do tamanho do spin. Por surgir nesse tratamento perturbativo, esse
platô é conhecido como semiclássico, em contraste ao platô observado em sistemas Hall
quântico, por exemplo. Discutiremos exemplos experimentais em que o platô é observado,
ilustrando a riqueza de fenômenos em magnetos frustrados, e apontando futuras direções
de trabalho.

Palavras-chave: Magnetismo frustrado. Platôs de magnetização. Transições de fase
magnéticas.
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1 INTRODUÇÃO

O magnetismo é um fenômeno físico que está presente desde o imã de geladeira
até disco rígido, compondo um dos mais antigos tópicos de estudo da Física. O primeiro
ingrediente que precisamos para explicar esse fenômeno é uma coleção de momentos
magnéticos, por exemplo, resultantes de spins desemparelhados das camadas de valência
de um conjunto de átomos. Suponha um material em uma rede periódica, como um cristal,
onde nos sítios i da rede temos tais momentos magnéticos Si. O segundo ingrediente é uma
interação entre eles. Adotamos um modelo dito de interação de troca, onde a energia entre
pares de spins é dada por Eij = −JSi · Sj, sendo J uma constante positiva, denominada
constante de troca magnética, Figura (1a). Notamos que a energia é minimizada quando
Si é paralelo a Sj. Num regime de baixas temperaturas, o sistema terá uma tendência de
minimizar as energias de todas essas interação locais, o que pode ser feito quando todos os
momentos apontam numa mesma direção. O sistema irá apresentar o que chamamos de
ordem de longo alcance, onde dois spins, mesmo de sítios distantes, estão correlacionados, no
sentido de que apontam todos numa mesma direção. Essa é a essência do ferromagnetismo,
onde interações locais produzem um fenômeno cooperativo gerando uma magnetização
resultante perceptível em uma escala macroscópica, Figura (1b).

−JSi · Sj

Si Sj

(a) Interação de troca. (b) Ordem ferromagnética. (c) Ordem antiferromagnética.

Figura 1 – Ilustração da ordem de longo alcance a partir da interação entre spins vizinhos.
Fonte: Elaborada pelo autor.

O sistema que acabamos de descrever é um exemplo de sistema magnético de
momentos localizados. Em suma, ao invés de termos transporte de elétrons nessa rede, a
repulsão columbiana é suficiente para manter os elétrons presos nos sítios, e então a interação
entre os momentos magnéticos se torna o foco do estudo. Descrevemos acima uma interação
do tipo ferromagnética, mas podemos ter também uma interação antiferromagnética
trocando −J → J na energia Eij . Se antes os spins se alinhavam para minimizar a energia,
agora a condição é de apontarem em direção oposta. Neste caso, há também a possibilidade
de ordem de longo alcance. Se imaginamos um sítio com spin S, um vizinho teria de ter
spin −S. Um vizinho deste segundo precisaria ter spin S, e o vizinho deste último teria
spin −S, assim por diante. A minimização da energia leva a uma bipartição da rede, onde
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metade dos sítios tem spin S e a outra metade −S, o que é conhecido como estado de
Néel, Figura (1c).

Convenientemente, nós conseguimos apresentar uma configuração que minimiza a
energia da interação entre cada par de spins. Esse nem sempre é o caso, e para ilustrar
isso, vamos considerar agora uma rede bidimensional triangular, Figura (2a). Considere
novamente uma interação de troca antiferromagnética entre todos os primeiros vizinhos.
Mesmo a nível de uma plaqueta triangular, notamos que não é possível minimizar a energia
em todas as interações locais. Por exemplo, olhando para a Figura (2b), o spin no sítio 2 é
oposto ao do sítio 1, mas o spin 3 não pode ser escolhido de forma a ser oposto a ambos
1 e 2. Em geral, vamos dizer que um sistema é frustrado se não for possível satisfazer
todos os vínculos de minimizações de energias locais. Nesse caso em particular, temos uma
frustração magnética de origem geométrica.

a1
a2

(a) Tripartição da rede.

1 2

3?

(b) Frustração em uma pla-
queta triangular.

(c) Configuração com spins
fazendo 120º entre si.

Figura 2 – Rede bidimensional triangular. Os vetores a1 = (1, 0) e a2 = (1/2,
√

3/2) estão
ilustrados.
Fonte: Elaborada pelo autor.

Usualmente, um efeito da frustração é causar uma degenerescência no estado
fundamental, Ref. (1). As consequências física dessas degenerescências são profundas, com
ramificações que são tema de pesquisa atuais, das quais podemos citar os líquidos de spins,
Ref. (2). Como demonstraremos em mais detalhes, flutuações se tornam muito relevantes
em alguns casos, e fazem o papel de levantar essa degenerescência.

Um fenômeno interessante inserido nesse contexto é o de platôs de magnetização.
Um spin isolado S na presença de um campo magnético H tem uma energia dada por
E = −gµBµ0

ℏ H ·S, onde g é o fator giromagnético, µB é magneton de Bohr e ℏ é a constante
de Planck reduzida. No que se segue, definiremos h ≡ gµBµ0

ℏ H para escrever E = −h · S.
Nos referiremos a h como o campo magnético, mantendo em mente que estão aglutinadas
todas as constantes. Consideremos agora o que é conhecido como modelo de Heisenberg
com interação antiferromagnética entre primeiros vizinhos e na presença de um campo
magnético externo, descrito pelo hamiltoniano

H = J
∑
⟨ij⟩

Si · Sj − h ·
∑

i

Si. (1.1)
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Aqui os Si são operadores de spin nos sítios i. Pode-se mostrar que se |h| é maior que um
certo valor crítico hc o estado fundamental do sistema é tal que todos os spins estão na
direção do campo, conhecido como estado polarizado. No caso da rede triangular, para
uma faixa de valores de campo menores que hc, se olharmos para a magnetização do
sistema, |m| =

∣∣∣∑i⟨Si⟩/N | (onde N é o número de sítios), observaremos um platô de
magnetização em 1/3 da magnetização do estado polarizado. Esta é uma fase que tem
análogo clássico, correspondendo a dois spin por plaqueta triangular na direção do campo,
e o outro na direção oposta. Por esse motivo, esse platô é dito de natureza semiclássica,
em contraste com outros platôs semelhantes onde a analogia falha, a exemplo do efeito
Hall quântico, Ref.(3), ou de outro platô de magnetização, esse de 1/9 da magnetização
do estado polarizado, observado na rede de Kagomé, Ref.(4). Este é um fenômeno que
encontra realizações experimentais em alguns materiais. O nosso objetivo no que se segue
é explicar o mecanismo do seu surgimento na rede triangular.
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2 LIMITE CLÁSSICO DO MODELO DE HEISENBERG

Vamos portanto considerar o modelo de Heisenberg com interação antiferromag-
nética entre primeiros vizinhos na presença de uma campo magnético externo, descrito
pelo hamiltoniano em Eq. (1.1). Esse é um modelo em que não temos uma solução geral,
mesmo a temperatura T = 0. Considere o que seria o correspondente estado de Néel como
na Figura (1c). Poderíamos representá-lo como um estado |↑↓↑↓ . . .⟩. Uma aplicação direta
do Hamiltoniano mostra que essa proposta natural nem mesmo é um autoestado. Veja
que o espaço de Hilbert de um sistema de N partículas com spin 1/2 tem tamanho de
2N e, por isso, é um trabalho muito difícil o de encontrar o espectro de energia. Por esse
motivo, recorremos a soluções aproximadas.

Vamos fazer uma abordagem semiclássica. Partiremos do limite clássico do modelo,
que explicaremos a seguir, obtendo as fases do sistema em função do campo. Em seguida,
consideraremos correções às quantidades calculadas no regime puramente clássicos. Isso nos
fornecerá estimativas para a resposta propriamente quântica, e por isso as entenderemos
como correções quânticas, Ref.(5).

2.1 Limite de S grande

Até o momento tínhamos tratado apenas do caso de operadores de spin 1/2. Existem,
no entanto, alguns mecanismos físicas que resultam em spins efetivos maiores, geralmente
por acoplamento de spins. É de interesse escrever o hamiltoniano novamente,

H = J
∑
⟨ij⟩

Sx
i Sx

j + Sy
i Sy

j + Sz
i Sz

j − h ·
∑

Si, (2.1)

mas nesse caso considerando o caso geral em que Sµ
i é a componente µ de um operador

de spin S, µ = x, y, z. Esses operadores obedecem à álgebra [Sµ
i , Sν

i ] = iℏ∑γ εµνγSγ
i ,

onde εµνγ é símbolo de Levi-Civita. Podemos reescalar os operadores Sµ
i → Sµ

i /S para
obter

[
Sµ

i

S
,

Sν
i

S

]
= 1

S
iℏ∑γ εµνγ

(
Sγ

i

S

)
. Notamos por fim que, no limite S → ∞, temos que[

Sµ
i

S
,

Sν
i

S

]
→ 0. Ou seja, as componentes do spin comutam entre si, de forma que podemos

tratá-las como um componentes de um vetor em três dimensões. A esse limite damos o
nome de limite clássico do modelo de Heisenberg.

2.1.1 Estado fundamental clássico

Vamos então considerar a rede triangular, descrita pelos pontos r = n1a1 + n2a2,
n1, n2 ∈ Z, como na Figura (2a). Em cada sítio vamos ter um vetor Si ∈ R3 de tamanho
|Si| = S. Agora, note que podemos reescrever tanto a primeira soma sobre vizinhos quanto
a segunda sobre todos os sítios em somas sobre plaquetas triangulares, de forma que
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H =
∑
△

{ H△︷ ︸︸ ︷
J

2
[
S1 · S2 + S2 · S3 + S3 · S1

]
− h

6 ·
[
S1 + S2 + S3

] }
, (2.2)

onde o índice △ denota soma sobre plaquetas, e, digamos, S1, S2, S3 denotam os spins de
uma plaqueta. O fator de 1/2 multiplicando J se dá porque cada ligação ⟨ij⟩ participa de
duas plaquetas. O fator de 1/6 para h se dá porque cada sítio participa de 6 plaquetas.
Denotando S△ = S1 + S2 + S3 e notando que (S△)2 = 3S2 + 2(S1 · S2 + S2 · S3 + S3 · S1),
temos

H△ = J

4 (S△)2 − h
6 · S△ − 3

4JS2 = J

4

[
S△ − h

3J

]2

− 3
4JS2 − h2

36J
, (2.3)

onde h = |h|. A minimização de H△ se dá zerando o quadrado (S△ − h/3J)2 = 0, desde
que não seja proibido pela desigualdade triangular. Neste segundo caso, os spins saturam
na direção do campo. As condições de minimização são, portanto,S△ = h/3J se h/3J < 3S,

S1 = S2 = S3 = Sĥ se h/3J ≥ 3S,
(2.4)

para uma plaqueta com spins S1, S2, S3. Essas condições são necessárias e suficientes. Dessa
forma, temos uma cota inferior para a energia do estado fundamental, Eef ≥ N△min(H△),
sendo N△ o número de plaquetas. Agora, note que existem configurações de spins onde
cada plaqueta tem exatamente uma tripla de spin que satisfaz os vínculos em Eq.(2.4). Para
isso, basta tomar alguma tripla de spin que obedece às relações, digamos S(0)

1 , S(0)
2 , S(0)

3 ,
bem como uma tripartição da rede, como na Figura (2a). Associando univocamente cada
um desses vetores a uma cor (digamos S(0)

1 à preta da figura, S(0)
2 à azul, etc., veja a Figura

(2c)), o preenchimento da rede dessa forma garante que cada plaqueta triangular tem
exatamente um de cada da tripla. Concluímos, por fim, que o estado fundamental tem
energia Eef = N△min(H△), com configurações de spin dadas pelas relações em Eq. (2.4)
para cada plaqueta.

2.1.2 Degenerescência massiva

Considerando primeiro o caso h = 0, as configurações de spin que satisfazem a
Eq.(2.4) têm a propriedade de serem coplanares com ângulo entre cada par de spin igual
a 120◦ (veja Figura (2c)). Há uma degenerescência nas configurações, que corresponde
a uma rotação rígida dos spins em torno de um eixo arbitrário, uma vez que preserva
os ângulos relativos. Essa é uma degenerescência esperada, de acordo com a simetria da
hamiltoniana. Por outro lado, consideremos o caso 0 < h ≤ hc, onde hc = 9JS é o campo
crítico. Vamos decompor os spins S em S∥ e S⊥ as componentes paralelas e perpendiculares
a h, respectivamente. A condição de minimização fica reescrita como S

∥
1 + S

∥
2 + S

∥
3 = h/3J

e S⊥
1 + S⊥

2 + S⊥
3 = 0. Tomemos ê um versor no plano perpendicular a h, de forma a

escolher S⊥
1 na direção de ê. Esta escolha está de acordo com a simetria da hamiltoniana de
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rotação em torno do eixo ĥ. No entanto, se ϕ e α são os ângulos que S⊥
2 e S⊥

3 fazem com ê,
respectivamente, note que, mesmo que assumíssemos que S⊥

1 = S⊥
2 = S⊥

3 (um subconjunto
das soluções), ainda teríamos a condição 1 + cos ϕ + cos α = 0. A equação com os dois
ângulos tem, portanto, infinitas soluções, o que se traduz numa degenerescência massiva na
configuração dos spins, degenerescência essa que não podemos mais dizer estar de acordo
com as simetrias da hamiltoniana do modelo. Nesse caso, dizemos que a degenerescência é
acidental.

2.2 Ordem por desordem

Dada essa degenerescência, vamos investigar a introdução de flutuações térmicas
no sistema. Apesar do contínuo de estados com mesma energia, é possível que um conjunto
destes tenha, por exemplo, maior entropia que outro. Com essa estratégia que detalharemos
a seguir podemos levantar essa degenerescência, isto é, a introdução das flutuações atua
efetivamente selecionando um subconjunto dos estados. Esse mecanismo é um exemplo
do que é conhecido como ordem por desordem, Ref.(6–8), onde as flutuações levantam a
degenerescência acidental do estado fundamental.

2.2.1 Teoria de perturbação no espaço real: Flutuações térmicas

Vamos olhar primeiramente para uma forma geral de teoria de perturbação termo-
dinâmica. Considere um sistema com energia E tal que podemos escrever E = E0 + V ,
onde E0 é a energia do estado fundamental e V um termo pequeno em relação a E0. A
energia livre do sistema fica dada por (veja Ref.(9))

F = F0 + ⟨V ⟩ − β

2
(
⟨V 2⟩ − ⟨V ⟩2

)
(2.5)

onde F0 representa a energia livre não perturbada, β = 1/kBT com KB a constante de
Boltzmann e T a temperatura do sistema. As quantidades ⟨V ⟩ e ⟨V 2⟩ representam médias,
com o peso de Gibbs do sistema não interagente. Muitas vezes a primeira correção ⟨V ⟩
é nula, por exemplo quando estamos considerando pequenas flutuações em torno de um
ponto de mínima energia. O segundo termo, β

2

(
⟨V 2⟩−⟨V ⟩2

)
= β

2

〈(
V −⟨V ⟩

)2
〉

, representa
flutuações, e ressaltamos o fato de que a correção à energia livre causada por ele é sempre
negativa.

Para aplicar no sistema de interesse, vamos agora tomar uma configuração dentre
aquelas do contínuo de estados degenerados (vamos nos restringir a configurações planares).
Com isso, vamos definir ẑi o versor apontando na direção do spin no sítio i para a particular
configuração escolhida. Em seguida, para cada ligação ⟨ij⟩ escolhemos os eixos x̂i e x̂j

de forma que pertençam ao plano ẑi − ẑj, e ŷi e ŷj são escolhidos perpendiculares a esse
mesmo plano, Figura (3). Com esses novos sistemas de referências o estado fundamental
é tal que os spin em cada sítio apontam na direção ẑi com Sz

i = S. Consideraremos, no
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ẑi x̂i

ŷi ŷj

ẑj

x̂j

ẑkx̂k ŷk

Figura 3 – Eixos locais para a configuração na Figura (2c).
Fonte: Elaborada pelo autor.

entanto, que existam no sistema componentes Sx e Sy, comparativamente pequenas em
relação a S, causadas por flutuações. Definindo θij = cos−1(ẑi · ẑj) e θi o ângulo entre ẑi e
h, a hamiltoniana se reescreve como

H = J
∑
⟨ij⟩

[
Sy

i Sy
j +(Sx

i Sx
j +Sz

i Sz
j ) cos θij +(Sx

i Sz
j −Sz

j Sx
i ) sin θij

]
−h

∑
i

[
Sz

i cos θi+Sx
i sin θi

]
.

(2.6)
Reescrevendo convenientemente Sz

i = S − (S − Sz
i ), a hamiltoniana fica dada por H =

Ecl + H0 + V , onde

Ecl = J
∑
⟨ij⟩

S2 cos θij − h
∑

i

S cos θi , H0 = 3JS
∑

i

(S − Sz
i )

V = J
∑
⟨ij⟩

[
Sy

i Sy
j +Sx

i Sx
i cos θij + (S − Sz

i )(S − Sz
j ) cos θij + (Sx

i Sz
j − Sz

i Sx
j ) sin θij

]
− h

∑
i

Sx
i sin θi,

sendo Ecl é a energia clássica do estado fundamental. Para a expressão acima, utilizamos o
fato de que o campo local, definido por hloc

i = h − J
∑′

j Sj , com ∑′
j denotando soma sobre

vizinhos, é proporcional ao spin no sítio, hloc
i = 3JSi para esse modelo. Vemos que este é o

caso se escrevermos ∑′
j Sj = 1

2
∑′

△[S1 + S2], sendo a última soma sobre plaquetas vizinhas.
Usando o vínculo da Eq.(2.4), concluímos que hloc

i = h − 1
2
∑′

△[h/3J − Si] = 3JSi.

Notamos que H0 é diagonal nos sítios, enquanto que os termos que agrupamos sob
o rótulo de V representam somas sobre diferentes sítios (como iremos discutir a seguir,
a última soma ∑i Sx

i cos θi pode ser descartada). Na linguagem da teoria de perturbação
delineada acima, vamos tomar H0 como a hamiltoniana não perturbada, e a nossa estratégia
consistirá em tratar V perturbativamente com relação a H0. Aqui é preciso comentar
que não exite um parâmetro pequeno que naturalmente distingue V de H0. O método
é, a rigor, uma expansão em 1/z, sendo z o número de vizinhos da rede, uma vez que
H0 = O(zJ), enquanto que V = O(J). Por outro lado, essa estratégia de tratar o segundo
termo perturbativamente é justificável do ponto de visto físico. Vemos que H0 está de
acordo com uma teoria de campo médio, já que a contribuição dessa correção para energia
clássica é apenas local no sítio i. Já os termos em V representam interações das flutuações
de diferentes sítios. Lembramos que em uma teoria de campo médio teríamos que os spins
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de sítios diferentes naturalmente se comportam de forma completamente independente e
descorrelacionada, isto é, ⟨Sα

i Sµ
j ⟩ = ⟨Sα

i ⟩⟨Sµ
j ⟩∀i, j ∈ Λ com α, µ = x, y, z. Isso nos leva a

concluir que a correção principal nesse método está realmente em H0, visto que o termo
V representa uma correção além do campo médio, e logo de ordem superior.

Para o próximo passo vamos ignorar o termo Ecl, que é constante para todo o
contínuo de estados degenerados. Nesse ponto, o fato de que a perturbação é sobre um
estado de mínimo implica que termos de primeira ordem nas flutuações do spin são nulos
(isto é o equivalente a dizer que o ponto de mínimo de uma função real tem derivada
nula, mas com a generalização natural para um espaço de parâmetro arbitrário). Vamos
agora, de fato, impor que Sx e Sy são pequenas componentes causadas por flutuações
térmicas. Considerando o regime kBT ≪ JS2, as flutuações devem de fato ser pequenas
em comparação com S, de forma que podemos escrever

Sz =
√

S2 − Sx2 − Sy2 = S − Sx2

2S
− Sy2

2S
+ O(S⊥4). (2.7)

Dessa forma a hamiltoniana fica reescrita como H = H0 + V2 + V3, onde

H0 = 3J

2
∑

i

[
Sx

i
2 + Sy

i
2
]
, V2 = J

∑
⟨ij⟩

[
Sy

i Sy
j + Sx

i Sx
j cos θij

]
, (2.8)

e V3 é um termo que depende de Sx, Sy em terceira ordem, o qual iremos descartar.
Lembrando que H0 está sendo tomado como hamiltoniana não perturbada, podemos
calcular o valor médio de qualquer função f(S⊥) das flutuações dos spins por

⟨f(S⊥)⟩0 = 1
Z0

∫
e−βH0f(S⊥)

∏
i

dS⊥
i , (2.9)

onde Z0 é a função de partição de H0. Essas são integrais gaussianas, e portanto podemos
calcular quantidades de interesse como ⟨(Sα

i )2⟩ = kBT
3J

, ⟨(Sα
i )4⟩ = 3

(
kBT
3J

)2
, ⟨(Sα

i )2k+1⟩ =
0, ∀k ∈ N com α = x, y Além disso, spins de sítios distintos são descorrelacionados,
⟨(Sα

i )m(Sµ
j )l⟩ = ⟨(Sα

i )m⟩⟨(Sµ
j )l⟩, α, µ = x, y, i ̸= j. Com isso, somos capazes de aplicar uma

teoria de pertubação termodinâmica nos moldes de Eq.(2.5) para obter F = F0 − β
2 ⟨V 2⟩,

onde F0 é a energia livre do estado não perturbado. Estamos assumindo aqui que ⟨V ⟩ = 0
(podemos afirmar que esse é o caso porque os desvios, que se dão na forma das componentes
Sx e Sy, devem ser simétricos em relação ao 0 já que não há uma direção preferencial).
Como V = V2 + O(S⊥3), temos que o termo dominante da perturbação se encontra por
∆F = −β

2 ⟨V 2
2 ⟩ + O(S⊥3), e portanto temos

∆F (2) = −βJ2

2

〈(∑
⟨ij⟩

[
Sy

i Sy
j + Sx

i Sx
j cos θij

])2〉

Expandindo a expressão, teremos termos do tipo ⟨Sy
i Sy

j Sy
kSy

l ⟩. Primeiramente, se
{i, j}∩{k, l} = ∅ temos que, como as componentes de spins diferentes são descorrelaciona-
das, o termo é equivalente a ⟨Sy

i Sy
j ⟩⟨Sy

kSy
l ⟩ o que, por sua vez é igual a ⟨Sy

i ⟩⟨Sy
j ⟩⟨Sy

k⟩⟨Sy
l ⟩
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(lembre-se que i ̸= j e k ̸= l pois estamos somando sobre primeiros vizinhos). Note que
a contribuição desse termo é nula. Tomemos agora um par ⟨ij⟩ fixo e suponhamos que
k = i, l ̸= j. Nesse caso, ⟨Sy

i Sy
j Sy

kSy
l ⟩ = ⟨(Sy

i )2⟩⟨Sy
j ⟩⟨Sy

l ⟩ = 0, novamente. A mesma
conclusão se tira em qualquer um dos casos em que a ligação ⟨kl⟩ compartilha um, e
somente um, vértice com a ligação ⟨ij⟩. Por fim vamos considerar o caso em que ⟨ij⟩ = ⟨kl⟩.
Temos então que ⟨Sy

i Sy
j Sy

kSy
l ⟩ = ⟨(Sy

i )2(Sy
j )2⟩ = ⟨(Sy

i )2⟩⟨(Sy
j )2⟩ = (kBT/3J)2. Veja que

esse cálculo pode ser estendido naturalmente para contabilizar a média de termos da
forma ⟨Sx

i Sx
j Sx

k Sx
l cos θij cos θkl⟩ = (kBT/3J)2 cos2 θij se ⟨ij⟩ = ⟨kl⟩ e 0 caso contrário.

Outros termos presentes na expansão são calculados por argumentos similares, da forma
⟨Sx

i Sx
j Sy

kSy
l ⟩ = ⟨Sx

i ⟩⟨Sx
j ⟩⟨Sy

k⟩⟨Sy
l ⟩ = 0. Concluímos então que

∆F (2) = −βJ2

2

(
kBT

3J

)2∑
⟨ij⟩

[1 + cos2 θij]. (2.10)

Percebendo que mesmo esta primeira correção não nula para a energia livre depende do
estado fundamental em função da parametrização dos ângulos θij, podemos apreciar a
relativa simplicidade deste método. Para uma generalização de como calcular os termos
de ordem superior, veja Ref.(10). Conseguimos o nosso objetivo de calcular uma correção
para a energia livre, e agora para um sistema com temperatura finita existirá uma seleção
entrópica dos estados, sendo necessária portanto a minimização de F .

2.3 Termo biquadrático

Vamos reescrever a expressão em Eq.(2.10) como F = F0 − kBT
18

∑
⟨ij⟩[1 + cos2 θij].

Lembrando que o estado fundamental tem, por definição, Si = Sẑi, ∀i, temos que Si · Sj =
S2 cos θij. Notamos que este é o segundo termo que aparece dentro da soma em Eq.(2.10),
a menos de um fator S2, e o primeiro termo não depende da configuração de spin (é
constante para todo o contínuo de estados degenerados). Esses pontos sugerem a proposta
de um modelo efetivo na rede triangular:

Heff = J
∑
⟨ij⟩

Si · Sj − h ·
∑

i

Si − K
∑
⟨ij⟩

(
Si · Sj

)2
, (2.11)

onde, como antes, os spins são vetores tridimensionais nos sítios. A novidade está na última
soma, −K

∑
⟨ij⟩

(
Si · Sj

)2
onde K ≥ 0 é uma constante. Chamamos esses termos dentro

da somatória de termos biquadráticos. A adição desse termo pretende simular o efeito da
correção à energia livre. Agora, quando minimizamos a hamiltoniana em Eq.(2.11) estamos
levando em conta, pela própria construção do modelo, as flutuações térmicas no sistema.

Com isso, vamos de fato procurar as configurações que minimizam a hamiltoniana
em Eq.(2.11). Como fizemos antes, aqui ainda podemos reescrever a hamiltoniana como
soma somente sobre as plaquetas triangulares,

H =
∑
△

{
J

2 [S1 ·S2+S2 ·S3+S3 ·S1]−
h
6 ·[S1+S2+S3]−

K

2 [(S1 ·S2)2+(S2 ·S3)2+(S3 ·S1)2]
}

.
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Dessa forma, a existência de uma coloração da rede triangular com três cores
garante que podemos minimizar individualmente cada uma das parcelas da soma acima.
Agora, assumindo uma configuração planar para os spins, vamos parametrizar os spins
pelos ângulos θi com o campo externo, e escrevemos

H△ = JS2

2 [cos(θ2 − θ1) + cos(θ3 − θ2) + cos(θ1 − θ3)] − h

6 (cos θ1 + cos θ2 + cos θ3)

− KS4

2 [(cos2(θ2 − θ1) + cos2(θ3 − θ2) + cos2(θ1 − θ3)].

(2.12)

Aqui S é o tamanho do spin. Agora o problema se reduz a minimização de uma função de
três variáveis. Usando o software Mathematica podemos determinar os valores de θ1, θ2 e
θ3 e dessa forma também a configuração dos spins. Com isso, obtemos a magnetização
por sítio m = S(cos θ1 + cos θ2 + cos θ3)ĥ/3. Na Figura (4) apresentamos as curvas de
magnetização para alguns valores de K.

(a) KS2/J < 1/11. (b) KS2/J > 1/11.

Figura 4 – Gráficos da magnetização relativa por spin |m|/S em função do campo externo
h para diferentes valores de K. Resultados para a minimização de Eq.(2.12) na
rede triangular. Linhas tracejadas indicam saltos ou descontinuidades.
Fonte: Elaborada pelo autor.

Para K = 0 recuperamos o resultado linear discutido anteriormente. Já para um
K > 0 observamos um surgimento de um platô de magnetização em m/S = 1/3, de acordo
com os resultados experimentais. A fase de baixos campos magnéticos é denominada de
estado Y , onde, para uma plaqueta, um spin aponta para baixo (i.e., contrário ao campo) e
os outros estão dispostos simetricamente, Figura (4). Com o aumento do campo chegamos,
para um dado valor crítico h

(1)
platô, na região do platô, onde tempo uma fase denominada

de up-up-down(uud), com um spin para baixo e dois para cima. A fase perdura até um
segundo campo crítico h

(2)
platô, quando começa uma fase denominada de fase V , com dois

spins fazendo um ângulo θ com o campo, e outro com θ′, Figura (4). Por fim, para um
campo hpol os spins saturam na direção do campo, num estado dito polarizado. Essas
conclusões são válidas principalmente para valores pequenos de K. Para valores mais altos
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desse parâmetro o sistema apresenta algumas interessantes sutilezas que discutiremos
brevemente a seguir.

2.4 Transições de fase

Olhando agora mais atentamente para os gráficos na Figura (4), vemos que a partir
de algum valor de K algumas transições são descontínuas. Para analisar melhor vamos
fazer uso da teoria de Landau para estudar essas transições de fase. Lembramos que agora a
hamiltoniana que estamos tentando minimizar está fazendo o papel justamente da energia
livre, de forma que a estratégia será expandir a própria função H em termos do parâmetro
de ordem, a ser escolhido em cada caso. Vamos primeiro estudar uma teoria geral de como
a mudança de um parâmetro pode transformar uma transição antes de segunda ordem em
uma de primeira ordem. Suponha que a energia livre f fica expandida em função de um
parâmetro de ordem ϕ, ao redor do ponto crítico, como f − f0 = u2ϕ

2 + u4ϕ
4 + u6ϕ

6, onde
f0 é o valor da energia livre na fase ordenada e estamos assumindo dois parâmetros κ, H,
tais que ui = ui(κ, H), i = 2, 4, 6, são funções desses parâmetros (para os casos de interesse,
a hamiltoniana tem simetria de inversão ϕ → −ϕ, e por isso já estamos descartando os
termos de ordem ímpar). Suponha que, para um dado κ0, u2(κ0, 0) < 0, u4(κ0, H) > 0, ∀H,
e vamos aumentar o parâmetro H. Então, o termo de ϕ6 não se faz necessário e teremos
uma transição de segunda ordem, com o valor crítico do parâmetro H∗ sendo dado de
forma que u2(κ0, H) é positivo para H > H∗, que satisfará u2(κ0, H∗) = 0, Figura (5a).
Por outro lado, se u4(κ0, H) fica negativo, o termo u6ϕ

6 precisa ser positivo para manter
a estabilidade. Nesse caso, teremos valores de mínimo simétricos em relação à origem,
digamos ±ϕ∗. Aumentando o valor de H, vemos que quando a energia livre deste mínimo
ϕ∗ passa por 0, Figura (5b), temos uma transição de primeira ordem para o estado
ordenado(11). A discussão pode ser adaptada para um caso em que a transição para a
fase ordenada se dá com a diminuição do parâmetro H (ou seja, quando o aumento do
mesmo parâmetro tira o sistema da fase ordenada).

2.4.1 Transição do estado Y para o uud

Vamos escrever a hamiltoniana em Eq.(2.12) com a parametrização com ângulo
θ na Figura (4). Para fazer uso da teoria de Landau tomamos θ como parâmetro de
ordem (θ = 0 na fase uud e não nulo na fase Y ). Expandindo em potências de θ temos
H = JS2

2

[
u0+u2θ

2+u4θ
4+u6θ

6
]
, com u2 = −1+H

3 +6κ, u4 = 7
12− H

36−6κ e u6 = −93+H+3168κ
1080 ,

onde estamos usando, κ = KS2/J e H = h/JS e já descartando termos da ordem O(θ8).
Primeiramente para κ = 0 note que u2 troca de sinal para H = 3. Dado que u4 > 0, ∀H < 3,
segue que essa transição seria contínua. Agora considere um valor κ > 0, mas ainda
suficientemente pequeno. Vamos mostrar que a mesma conclusão se mantêm. Nos termos
da discussão acima, u2 < 0 para H = 0 e troca de sinal para H = 3(1 − 6κ). Vemos que se
H ≤ 3(1−6κ) então u4(κ, H) = 7/12−H/36−6κ ≥ 7/12−(1−6κ)/12−6κ = (1−11κ)/2
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ϕ

f

H < H∗

H > H∗

H = H∗

(a) u4 > 0.

ϕ

f

H < H∗

H > H∗

H = H∗

(b) u4 < 0.

Figura 5 – Ilustração das curvas de f em função de ϕ variando o parâmetro H.
Fonte: Elaborada pelo autor.

que será positivo desde que κ < 1/11. Dessa forma, ocorrerá a transição de segunda ordem
para H∗ = 3(1 − 6κ), isto é, h

(1)
platô = 3JS(1 − 6KS2/J). Pela discussão acima, vemos que

existe um valor crítico κ∗ = 1/11 tal que, para κ > κ∗, existirá algum valor do campo entre
0 e h

(1)
platô a partir do qual u4 < 0. Nesse caso (pode-se verificar que u6 > 0) a transição do

estado Y para uud será de primeira ordem, com um valor de campo crítico hc ̸= h
(1)
platô.

Notamos ainda que, para valores muito altos de κ, pode acontecer de o primeiro
estado ser o uud ao invés do Y . Para determinar o κ crítico nesse caso, deve valer a
desigualdade Huud|h=0 < HY |h=0 ⇐⇒ κ > 2/9.

2.4.2 Transição do estado uud para o V

Olhando para a Figura (4) parece ser o caso que essa transição é sempre contínua.
Tomando a parametrização θ como na Figura (4), e usando o fato de que existe o vínculo
sin θ′ = 2 sin θ para o estado V , expandimos a hamiltoniana em Eq.(2.12) em função do

parâmetro de ordem θ como H = JS2

2

[(
− 1 − H

3 − 3κ

)
+
(

1 − H
3 + 2κ

)
θ2 +

(
23
12 − 17H

36 +

10κ
3

)
θ4
]
+O(θ6). Vemos que u2(κ, h

(1)
platô) > 0 e há a troca de sinal para H∗ = 3(1+2κ).Agora

note que H ≤ H∗ ⇒ u4(κ, H) ≥ 23/12 − 17(1 + 2κ)/12 + 10κ/3 = (1 + κ)/2. Dessa forma,
como temos que κ ≥ 0 sempre, u4 ≥ 0. Assim, teremos sempre uma transição de segunda
ordem com valor crítico h

(2)
platô = 3JS(1 + 2KS2/J).

2.4.3 Transição do estado V para o estado polarizado

Uma análise análoga ao que fizemos na seção 2.4.2, tomando um parâmetro de
ordem adequado e retendo até a sexta potência, revelará a mesma natureza da transição.
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Para κ < κ∗, a transição é contínua com hpol = 9JS(1 − 2KS2/J). Curiosamente, o valor
crítico também é κ∗ = 1/11. Para κ > 1/11 teremos uma transição descontínua.

Há ainda a possibilidade, para valores suficientemente grandes de K, da supressão
da fase V , com um transição direta da fase uud para a fase polarizada. Isso se dá quando
HV |

h=h
(2)
platô

≥ Hpol|h=h
(2)
platô

⇐⇒ κ ≥ 1/2.

Podemos generalizar toda essa discussão para afirmar que modelos com termo de
troca biquadrático terão a tendência de ter transições de fase descontínuas no regime de κ

alto. Nesse limite, o termo biquadrático é dominante e força os spins em configurações
paralelas ou antiparalelas, resultando efetivamente num modelo do tipo Ising. Devemos,
no entanto, ter cuidado sobre a validade de tais resultados quando, como é o caso aqui, a
introdução do termo biquadrático simula pequenas pertubações, uma vez que, por óbvio,
a teoria de perturbações desenvolvida deixa de ser confiável no limite κ ≫ 1 ⇐⇒ T ≫ 1.
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3 FORMALISMO DE ONDAS DE SPIN

Estamos interessados agora em sair do limite clássico, onde tratamos os spins como
vetores tridimensionais, e olhar para o modelo de Heisenberg em sua forma quântica.
Vamos portanto considerar uma rede triangular de N sítios e vamos definir o hamiltoniano
como em Eq.(1.1), com interação de troca antiferromagnética entre primeiros vizinhos e
com acoplamento Zeeman de um campo externo h = hẑ. Os spins Si são operadores de
spin S nos sítios i.

Como discutido no capítulo anterior, nós propusemos uma mecanismo de levanta-
mento da degenerescência acidental. Vamos mostrar logo a seguir que precisaremos usar
parametrizações de configurações de spins. A proposta é, portanto, que, para cada valor
de campo magnético h, a configuração que escolheremos é aquela que corresponde à fase
selecionada pelas flutuações clássica no limite K → 0+. Em outros termos, as fases que
usaremos são a fases Y para h ≤ 0 < 3JS, uud para h = 3JS, V para 3JS < h < 9JS, e
polarizada para h ≥ 9JS.

Dito isso, para um valor de campo h, seja {Si}i=1,2,...,N conforme essa prescrição
que propomos. Definamos eixos locais como feito em Eq.(2.6), onde θi é ângulo entre ẑi

e o campo magnético h. Vamos introduzir um conjunto de novos operadores Sx′
i , Sy′

i , Sz′
i

definido em analogia com o estado fundamental clássico, da forma

Sx
i

′ = cos θiS
x
i − sin θiS

z
i , Sy

i
′ = Sy

i , Sz
i

′ = sin θiS
x
i + cos θiS

z
i . (3.1)

Com isso, vamos definir os operadores n̂′
i = S − Sz

i
′, que representam os des-

vios de spins. Definimos também |n′
1, n′

2 . . . n′
N⟩ os autoestados de n̂′

i, que satisfazem
n̂′

i |n′
1, n′

2 . . . n′
N⟩ = n′

i |n′
1, n′

2 . . . n′
N⟩ , ∀i. Aqui fica claro que a motivação da construção

de eixos locais é que a configuração clássica de spin corresponde ao estado em que
n′

i = 0, ∀i, ou seja, estado com Sz′
i = S. Introduzimos então os familiares operadores

de criação e aniquilação, definidos por a†
i |. . . , n′

i + 1, . . .⟩ =
√

n′
i + 1 |. . . , n′

i + 1, . . .⟩ ,
ai |. . . , n′

i + 1, . . .⟩ =
√

n′
i |. . . , n′

i − 1, . . .⟩. Esses são operadores bosônicos, isto é, obede-
cem às regras de comutação [a†

i , aj] = δij e [ai, aj] = [a†
i , a†

j] = 0. Sendo S±′
i = Sx′

i ± iSy′
i ,

introduzimos o que é conhecido como transformações de Holstein-Primakoff, Ref.(12),
dadas por

Sz′
i = S − a†

iai , S ′+
i =

√
2S

(
1 − a†

iai

2S

)1/2

ai , S ′−
i =

√
2Sa†

i

(
1 − a†

iai

2S

)1/2

. (3.2)

Fica claro então a interpretação física da nossa construção. Tomamos como “vácuo”
da teoria o estado que representa o estado fundamental clássico, que nesse caso é com
todos os spins Sz valendo S. Com isso o operador de criação a†

i tem o papel de criar
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excitações Sz
i → Sz

i − 1, que aqui são exatamente os desvios dos spins – os operadores ai

têm, portanto, o papel contrário. Uma vez criada essa excitação (note que podemos pensar
que criamos bósons no sítio i), os termos S+ e S− na hamiltoniana são responsáveis por
fazer um “hopping” desta na rede, isto é, os operadores atuam no sentido de transferir a
excitação para os vizinhos, ocasionando um deslocamento do bóson pela rede. Chamamos
de onda de spin esse transporte da excitação magnética pela rede.

Com isso posto, escrevemos portanto o hamiltoniano em função dos novos operadores
bosônicos, substituindo Eq.(3.2) e as inversas de Eq.(3.1) em Eq.(1.1). Para que possamos
fazer avanço, vamos expandir as expressões em potências de a†

iai/2S, S+′
i =

√
2Sai +O(a3),

S−′
i =

√
2Sa†

i + O(a3). Assim,

H = J
∑
⟨ij⟩

{
cos(θi − θj)

[
S2 − S

(
a†

iai + a†
jaj

)
+ S

2
(
aiaj + a†

iaj + a†
jai + a†

ia
†
j

)]

− S

2
(
aiaj − a†

iaj − aia
†
j + a†

ia
†
j

)
+ sin(θi − θj)S

√
2S

[
aj + a†

j −
(
ai + a†

i

)]}

− h
∑

i

{(
S − a†

ia
†
i

)
cos θi +

√
S

2
(
ai + a†

i

)
sin θi

}
+ O(a3).

(3.3)

Isso nos fornece uma série de potência em 1/S, de forma que podemos agrupar
os termos na forma H = ∑∞

n=0 S2− n
2 Hn (para ser preciso, devemos reescalar o campo

magnético por JS). Notamos que o termo da ordem de S2, S2H0 = J
∑

⟨ij⟩ S2 cos(θi − θj)−
h

JS
J
∑

i S2 cos θi, representa a energia clássica. Temos também termos da ordem de S
√

S,
que contêm os operadores a e a† em primeira ordem. Eles representam o H1, e se anularão
no cálculo de médias para expansão ao redor do estado fundamental clássico, como aqui
é o caso. Temos também os termos da ordem de S, que contêm termos quadráticos
de operadores a, a†, representando o H2. Esses são o que entendemos como flutuações
quânticas. O próximo passo será descartar os termos da ordem de O(a3). Essa aproximação
se justifica desde que estejamos num regime dito diluído, quando ⟨a†

iai/2S⟩ ≪ 1. Se
entendermos fisicamente o significado dessa média, podemos argumentar a razoabilidade
da aproximação. Relembrando o espírito do método semiclássico aqui adotado, essa média
representa uma medida das flutuações quânticas, isto é, indica o quanto o estado verdadeiro
(ou seja, tratando puramente quanticamente) dista do estado que corresponde ao estado
fundamental clássico. Um argumento, portanto, para descartarmos a priori os termos
de ordem superiores, é o relativo sucesso da descrição puramente clássica. Uma vez que
os estados clássicos descrevem em alguma medida o fenômeno do platô, esperamos que
as flutuações representem uma correção. A expectativa de sucesso aqui também está
embasada, por outro lado, no sucesso do mesmo método em outros casos, como por
exemplo em Ref.(13,14). Apesar disso, em última análise o mérito da aproximação tem de
ser julgado a posteriori.
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3.1 Transformações de Bogoliubov

O hamiltoniano em Eq.(3.3) está escrito em grande generalidade. Vamos usar agora
as parametrizações particulares θi, i = 1, 2, 3 . . . N dos spins para cada configuração dos
estados fundamentais clássicos. Nesses casos, a rede sempre está divida em três sub-redes
de tal forma que as orientações dos spins pertencentes a uma mesma sub-rede são iguais.
Por isso, todo ângulo pode ser identificado com um dentre três ângulos θµ, µ = 1, 2, 3,
um para cada sub-rede. Adicionamos o índice µ nos operadores ai para indicar a sua
sub-rede. O nosso objetivo agora é de diagonalizar este hamiltoniano. Aqui faz-se útil tomar
a transformada de Fourier, akµ = 1√

N

∑
i e−ik·riaiµ, aiµ = 1√

N

∑
k eik·riakµ. Substituindo,

poderemos agrupar os termos na forma

H = S2H0 +
∑

k

3∑
µ,ν=1

Aµν
k a†

kµakν + 1
2
(
Bµν

k a†
kµa†

kν + H.c.
)
, (3.4)

onde H.c. denota o hermitiano conjugado. Os coeficientes Aµν
k e Bµν

k dependem da parame-
trização da configuração de spins. Explicitamente, identificamos para o nosso caso

Ak =


A γ∗

kD γkH

γkD B γ∗
kF

γ∗
kH γkF C

 , Bk =


0 γ∗

kE γkI

γkE 0 γ∗
kG

γ∗
kI γkG 0

 , (3.5)

onde γ = eik·a1 +eik·a2 +eik·(−a1+a2) com a1, a2 como dados na Figura (2a), e os coeficientes

A = −3JS(cos θ1,2 + cos θ1,3) + h cos θ1 , D = JS
(cos θ1,2 + 1)

2 , E = JS
(cos θ1,2 − 1)

2 ,

B = −3JS(cos θ1,2 + cos θ2,3) + h cos θ2 , F = JS
(cos θ2,3 + 1)

2 , G = JS
(cos θ2,3 − 1)

2 ,

C = −3SJ(cos θ2,3 + cos θ3,1) + h cos θ3 , H = JS
(cos θ3,1 + 1)

2 , I = JS
(cos θ3,1 − 1)

2 ,

sendo θi,j = θi − θj. O que obtemos na Eq.(3.4) recai na classe de hamiltonianos
bosônicos quadráticos, cujo a diagonalização é um problema sabidamente resolvido
(Ref.(15)) pelo que é conhecido como transformações de Bogoliubov. No nosso caso,
buscamos uma diagonalização já no espaço de momentos. Em particular, definindo
αk = (ak1, ak2, ak3, a†

−k1, a†
−k2, a†

−k3)T , busca-se uma transformação βk = Tkαk, com
βk = (bk1, bk2, bk3, b†

−k1, b†
−k2, b†

−k3)T de tal forma que os novos operadores bkµ são também
bosônicos. Uma transformação desse tipo que ao mesmo tempo resulta só em termos da
forma b†

kµbkµ é o que conhecemos como transformação de Bogoliubov. Aplicando neste
caso, obtemos (Ref.(16))

H = S2Eef,0 + SEef,1 + S
∑

k

3∑
µ=1

ϵkµb†
kµbkµ, com Eef,1 = 1

2
∑

k

(∑
µ

ϵkµ − TrAk
)
, (3.6)

onde Tr denota o traço e ϵkµ são autovalores obtidos na diagonalização. Temos portanto
uma correção para a energia de estado fundamental, e vamos tomar como estimativa
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da energia Eef = S2Eef,0 + SEef,1, onde o segundo termo representa o que chamamos de
correção de ponto zero. Note que para obter a energia de fato do estado fundamental
deveríamos somar todos os termos da série, e por isso a expressão anterior fornece apenas
uma aproximação.

3.2 Comparação de energias

Com o resultado final da seção anterior, vamos propor o critério para seleção
das fases nesse esquema semiclássico. Tomando as fases clássicas como ponto de partida,
decidiremos como a fase do sistema aquela que tem a menor energia Eef = S2Eef,0 + SEef,1.

Vamos portanto fornecer explicitamente as parametrizações das configurações de
spins para cada regime de campo magnético. Por exemplo, para a fase Y , i.e., 0 ≤ h < 3JS,
tomamos a condição de minimização da hamiltoniana clássica em Eq.(2.4) mas agora
sujeita ao vínculo θY

2 = −θY
3 e θY

1 = π, que resulta em θY
2 = −θY

3 = cos−1
[
(3JS +h)/6JS

]
.

Para a fase uud, θuud
1 = π, θuud

2 = θuud
3 = 0. Para a fase V ,i.e., 3JS < h < 9JS,

temos o vínculo θ2 = θ3. A condição na Eq.(2.4) na direção perpendicular ao campo
resulta em 2 sin θ1 + sin θ2=0. Dessa forma, temos θV

1 = − cos−1
[
(−27J2S2 + h2)/6hJS

]
e

θ
(V )
2 = θ

(V )
3 = cos−1

[
(27J2S2 + h2)/12hJS

]
.

Com cada uma das parametrizações, aplicamos a diagonalização com as transfor-
mações de Bogoliubov usando o software Mathematica para os momentos k na primeira
zona de Brillouin. As energias para valores de campo estão apresentados na Figura (6) a
seguir.

(a) (b)

Figura 6 – (a)Energia Eef = S2Eef,0 +SEef,1, com S = 1/2 para as diferentes fases. A curva
pontilhada vermelha representa a energia clássica, S2Eef,0; (b)Magnetização
em função do campo para diferentes valores de tamanho do spin obtido com o
método variacional.
Fonte: Elaborada pelo autor.

Um ponto que enfatizamos é que aqui só fazemos o cálculo tomando a parametriza-
ção de uma dada fase no intervalo de valores de campo em que ela é a fase selecionada pelas
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flutuações. Por isso, a rigor só temos a correção de ponto zero para a energia do estado uud
exatamente no ponto h = 3JS. Para comparar a energia, no entanto, precisamos comparar
o resultado em faixas de valores de campos. Por isso, para o cálculo da energia do estado
uud, fizemos uma extrapolação linear. A energia do estado fundamental, podemos provar,
é dada por Euud(h) = Euud(3JS) − NS

3 (h − 3JS). Aqui obtemos o coeficiente angular pelo
fato de que a magnetização é definida por m = − 1

N
∂Egs
∂h

e a magnetização clássica é igual
a NS/3. Não é sempre verdade que a magnetização, para uma fase arbitrária, é igual à
magnetização clássica, isso porque, da mesma forma que a energia sofre uma correção de
ponto zero, o spin local sofre uma redução no seu tamanho, ⟨Sz′

i ⟩ = S − ⟨a†
iai⟩. Acontece

de ser o caso que, para configurações colineares com o campo, como é o caso do estado
uud, a magnetização é conservada (esse resultado vale inclusive considerando todas ordens
de S, Ref.(17)).

Por fim, comparando as energias como na Figura (6), vemos que, para valores
baixos de campo, a fase com menor energia é ainda a Y . Existirá uma faixa de campos
magnéticos, digamos h1 ≤ h ≤ h2 em que a fase de menor energia é a uud. Para valores
relativamente altos de campo temos que a fase V é selecionada. Por último, a fase de
menor energia é a completamente saturado (um resultado geral da teoria de ondas de spin
é de que, dado que o estado polarizado é, de fato, um autoestado do hamiltoniano, poderá
se concluir que a transição para o estado polarizado se dá com campo crítico hc = 9JS,
valor igual ao resultado clássico)

Chegamos portanto numa explicação semiclássica do mecanismo de surgimento do
platô de magnetização. Naquela faixa entre h1 e h2 a fase do sistema é, de fato, a uud, e
um gráfico de magnetização em função do campo revelaria o platô de 1/3.

3.3 Método variacional

Apesar de produzir resultados qualitativamente bons, fazer a extrapolação linear
somente para o estado uud e não para as outras fases produz resultados que não estão de
acordo com outros mais bem estabelecidos, como por exemplo Ref.(18). Note inclusive
que, como a energia em função do campo será dada pela composição das curvas de energia
(energia da fase Y para h < h1, energia da uud para h1 < h < h2, etc.), as transições
de fase teriam descontinuidades na magnetização, uma vez que a curva de energia teria
descontinuidades na derivada.

Para melhorar a acurácia da nossa descrição, seguimos aqui o método variacional
como proposto em Ref.(17). Seja |ϕ0⟩ o estado fundamental proposto (i.e. o vácuo dos
operadores bi) para o hamiltoniano quadrático tomando a parametrização do estado
classicamente estável (i.e., de menor energia) no campo h = h0. Então, a energia variacional
é definida como E0 = ⟨ϕ0| H(h0) |ϕ0⟩ − (h − h0) ⟨ϕ0|

∑
i Sz

i |ϕ0⟩. Uma nova curva de energia
Ẽ é obtida comparando, para um dado campo h, as energias extrapoladas de todas as
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estruturas e para todos os campo, Ẽ(h) = min
h0,fases

(
⟨ϕ0| H(h0) |ϕ0⟩−(h−h0) ⟨ϕ0|

∑
i Sz

i |ϕ0⟩
)

.

A justificativa desse método é de mimicar os efeitos de termos de ordem superiores da
série em 1/S que, pode-se demonstrar, têm o papel de renormalizar a configuração clássica
de spins. Como tomamos um mínimo sobre todas as fases e campos h0, permite-se que
a fase escolhida em um campo h seja uma que não é aquela estabilizada classicamente.
Pode-se mostrar que campo h0 que satisfaz a minimização é tal que h − h0 é da ordem de
1/S. Por isso, para uma correção total da ordem de 1/S é suficiente reter só a contribuição
clássica de ⟨ϕ0|

∑
i Sz

i |ϕ0⟩. Fizemos, portanto, a minimização numérica usando o sofware
Mathematica e, com essa energia variacional Ẽ, obtemos, a partir de m = − 1

N
∂Ẽ
∂h

, a curva
de magnetização na Figura (6b).

Temos então o resultado do platô de magnetização em 1/3 da magnetização de
polarização. Veja que a largura do plato decresce com o tamanho do spin, conforme
esperado, uma vez que a flutuação é parametrizado por 1/S, e recuperamos o resultado
clássico no limite S → ∞. O resultado obtido tem boa concordância com simulações
numéricas, Ref. (19,20), e resultados de experimentos, Ref. (21–24).
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4 CONCLUSÃO

Sumarizando todos os passos desenvolvidos até aqui, começamos ilustrando a relação
entre frustração magnética e degenerescência. Em particular, para o caso do modelo de
Heisenberg Clássico na rede triangular temos uma degenerescência acidental massiva no
estado fundamental. Precisamente nesse ponto fazem-se muito relevantes as flutuações no
sistema. Ilustramos o efeito de flutuações térmicas, em particular por meio de uma teoria
de perturbação no espaço real. Isso fornece um exemplo do que é conhecido como ordem
por desordem, onde a introdução dessas flutuações atuam como um mecanismo além
do campo médio e levantam a degenerescência acidental. Este é um tipo de mecanismo
bastante geral, com aplicação em vários outros sistemas frustrados.

Feita essa discussão, fizemos uso do formalismo de ondas de spin, tomando como
base as fases classicamente selecionadas. Essa é uma abordagem semiclássica, comparamos
as energias incluindo as correções quânticas e propomos como critério a seleção da fase de
menor energia. Com isso demonstramos a existência, pela menos de forma qualitativa, do
platô de magnetização em uma faixa de valores de campo. Por fim, aplicamos um método
variacional que dá uma concordância quantitativa para o platô de magnetização. Como
ilustrado na Figura 6b, o tamanho do platô depende do tamanho do spins S, e, no limite
clássico, S → ∞, recuperamos o comportamento linear clássico.

Esse exemplo para a rede triangular aqui descrito pode ser generalizado para fornecer
um roteiro de como estudar o fenômeno de platôs de magnetização, algo que encontra
aplicação em outros sistemas frustrados e tem chamado bastante atenção recentemente(25).
Uma possível direção futura de pesquisa seria investigar o comportamento do modelo de
Heisenberg no que é conhecido como rede de Kagomé, uma rede bidimensional formada por
triângulos que compartilham vértices, sendo muito frustrada. Estudos numéricos (26–28)
indicaram a existência de um platô de magnetização de 1/3 da magnetização do estado
polarizado, e resultados experimentais para altos campos magnéticos confirmaram sua
presença em alguns materiais reais(4, 29). Fica então a pergunta, podemos seguir a receita
aqui proposta e explicar de forma semiclássica esse platô? Essas e outras questões tornam
fascinante o estudo dos magnetos frustrados, e que buscaremos responder em um futuro
próximo.
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