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RESUMO

Frustracao geométrica é a incapacidade de satisfazer simultaneamente todas as interagoes
locais em sistemas de momentos magnéticos localizados, podendo levar a uma grande
degenerescéncia de estados fundamentais. Ainda que o sistema mostre ordem de longo
alcance a baixas temperaturas, a frustracao deixa marcas indeléveis, que aparecem em
diferentes observaveis fisicos. Um exemplo marcante é o processo de magnetizacdo de um
sistema antiferromagnético bidimensional com geometria triangular. Aqui, colocamos esse
magneto em um campo magnético e estudamos como a magnetizacao uniforme evolui
com o aumento do campo externo até atingir o estado dito polarizado. Observa-se nesse
caso um platéo de magnetizacao para uma faixa de valores do campo. Neste projeto
investigamos o comportamento de um modelo de spins na rede triangular na presenca de
um campo magnético externo, incluindo flutuagoes térmicas e quanticas. Em particular,
a primeira parte do projeto serd dedicada ao estudo do limite classico do modelo de
Heisenberg antiferromagnético, onde os spins sao tratados como vetores. Discutiremos a
curva de magnetizagao para temperatura nula e demonstraremos uma degenerescéncia
massiva no estado fundamental. Em seguida, consideraremos a introducao de flutuagoes
térmicas, que fornecerao um exemplo de mecanismo de ordem por desordem, levantando
a degenerescéncia. Isso sera feito utilizando uma teoria de perturbacao termodinamica.
Entendido o caso cléassico, trataremos agora do modelo de Heisenberg em sua versao
quantica para a mesma rede triangular, no regime complementar de 7" = 0. Isso seré feito
utilizando o formalismo de ondas de spin. Como demonstraremos, esse método representa
uma expansao em uma série de poténcias de 1/S em relagdo ao equivalente cldssico, onde
S é o tamanho do spin. Essas correcoes sdo o que entendemos como flutuagoes quénticas e
mostraremos que selecionam os mesmos estados que as flutuacoes térmicas, dando grande
robustez ao formalismo. Mostraremos a emergéncia do platé de magnetizacao e que sua
extensao é funcao do tamanho do spin. Por surgir nesse tratamento perturbativo, esse
platd é conhecido como semiclassico, em contraste ao platé observado em sistemas Hall
quantico, por exemplo. Discutiremos exemplos experimentais em que o plato é observado,

ilustrando a riqueza de fené6menos em magnetos frustrados, e apontando futuras dire¢oes
de trabalho.

Palavras-chave: Magnetismo frustrado. Platos de magnetizacao. Transigoes de fase

magnéticas.
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1 INTRODUCAO

O magnetismo é um fenémeno fisico que esta presente desde o ima de geladeira
até disco rigido, compondo um dos mais antigos tépicos de estudo da Fisica. O primeiro
ingrediente que precisamos para explicar esse fendmeno é uma colecdo de momentos
magnéticos, por exemplo, resultantes de spins desemparelhados das camadas de valéncia
de um conjunto de dtomos. Suponha um material em uma rede periédica, como um cristal,
onde nos sitios ¢ da rede temos tais momentos magnéticos S;. O segundo ingrediente é uma
interacao entre eles. Adotamos um modelo dito de interacao de troca, onde a energia entre
pares de spins é dada por £;; = —JS; - S;, sendo J uma constante positiva, denominada
constante de troca magnética, Figura (1a). Notamos que a energia é minimizada quando
S; ¢ paralelo a S;. Num regime de baixas temperaturas, o sistema tera uma tendeéncia de
minimizar as energias de todas essas interacao locais, o que pode ser feito quando todos os
momentos apontam numa mesma direcao. O sistema ird apresentar o que chamamos de
ordem de longo alcance, onde dois spins, mesmo de sitios distantes, estao correlacionados, no
sentido de que apontam todos numa mesma direcao. Essa é a esséncia do ferromagnetismo,
onde interagoes locais produzem um fenémeno cooperativo gerando uma magnetizacao

resultante perceptivel em uma escala macroscopica, Figura (1b).
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(a) Interacao de troca. (b) Ordem ferromagnética. (c) Ordem antiferromagnética.

Figura 1 — Ilustracao da ordem de longo alcance a partir da interagao entre spins vizinhos.
Fonte: Elaborada pelo autor.

O sistema que acabamos de descrever é um exemplo de sistema magnético de
momentos localizados. Em suma, ao invés de termos transporte de elétrons nessa rede, a
repulsao columbiana é suficiente para manter os elétrons presos nos sitios, e entdo a interagao
entre os momentos magnéticos se torna o foco do estudo. Descrevemos acima uma interacao
do tipo ferromagnética, mas podemos ter também uma interagao antiferromagnética
trocando —J — J na energia E;;. Se antes os spins se alinhavam para minimizar a energia,
agora a condicao é de apontarem em direcao oposta. Neste caso, ha também a possibilidade
de ordem de longo alcance. Se imaginamos um sitio com spin S, um vizinho teria de ter
spin —S. Um vizinho deste segundo precisaria ter spin S, e o vizinho deste tultimo teria

spin —S, assim por diante. A minimizagdo da energia leva a uma biparticdo da rede, onde



metade dos sitios tem spin S e a outra metade —S, o que é conhecido como estado de
Néel, Figura (1c).

Convenientemente, nés conseguimos apresentar uma configuracao que minimiza a
energia da interagao entre cada par de spins. Esse nem sempre é o caso, e para ilustrar
isso, vamos considerar agora uma rede bidimensional triangular, Figura (2a). Considere
novamente uma interacao de troca antiferromagnética entre todos os primeiros vizinhos.
Mesmo a nivel de uma plaqueta triangular, notamos que nao é possivel minimizar a energia
em todas as interagoes locais. Por exemplo, olhando para a Figura (2b), o spin no sitio 2 é
oposto ao do sitio 1, mas o spin 3 nao pode ser escolhido de forma a ser oposto a ambos
1 e 2. Em geral, vamos dizer que um sistema ¢ frustrado se nao for possivel satisfazer
todos os vinculos de minimizagoes de energias locais. Nesse caso em particular, temos uma

frustragdo magnética de origem geométrica.
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(b) Frustragao em uma pla-(c) Configuragdo com spins
a) Triparticao da rede. queta triangular. fazendo 120° entre si.

Figura 2 — Rede bidimensional triangular. Os vetores a; = (1,0) e ap = (1/2,1/3/2) estdo
ilustrados.
Fonte: Elaborada pelo autor.

Usualmente, um efeito da frustragdo é causar uma degenerescéncia no estado
fundamental, Ref. (1). As consequéncias fisica dessas degenerescéncias sao profundas, com
ramificagdes que sao tema de pesquisa atuais, das quais podemos citar os liquidos de spins,
Ref. (2). Como demonstraremos em mais detalhes, flutuagoes se tornam muito relevantes

em alguns casos, e fazem o papel de levantar essa degenerescéncia.

Um fendémeno interessante inserido nesse contexto é o de platos de magnetizagao.

Um spin isolado S na presenga de um campo magnético H tem uma energia dada por

E = —2BRH.S onde g é o fator giromagnético, pp é magneton de Bohr e i é a constante
de Planck reduzida. No que se segue, definiremos h = %25 H para escrever £ = —h - S.

Nos referiremos a h como o campo magnético, mantendo em mente que estao aglutinadas
todas as constantes. Consideremos agora o que é conhecido como modelo de Heisenberg
com interacao antiferromagnética entre primeiros vizinhos e na presenca de um campo

magnético externo, descrito pelo hamiltoniano

H=J> S;-S;—h->_S,. (1.1)

(i) i



Aqui os S; sao operadores de spin nos sitios i. Pode-se mostrar que se |h| é maior que um
certo valor critico h. o estado fundamental do sistema ¢é tal que todos os spins estao na
direcao do campo, conhecido como estado polarizado. No caso da rede triangular, para
uma faixa de valores de campo menores que h., se olharmos para a magnetizacao do
sistema, |m| = ’Zi(Si> /N| (onde N é o ntmero de sitios), observaremos um platé de
magnetizacdo em 1/3 da magnetizagdo do estado polarizado. Esta é uma fase que tem
analogo classico, correspondendo a dois spin por plaqueta triangular na dire¢cao do campo,
e o outro na direcao oposta. Por esse motivo, esse plato é dito de natureza semiclassica,
em contraste com outros platos semelhantes onde a analogia falha, a exemplo do efeito
Hall quéntico, Ref.(3), ou de outro platé de magnetizacao, esse de 1/9 da magnetizagao
do estado polarizado, observado na rede de Kagomé, Ref.(4). Este é um fenémeno que
encontra realizagoes experimentais em alguns materiais. O nosso objetivo no que se segue

¢é explicar o mecanismo do seu surgimento na rede triangular.



2 LIMITE CLASSICO DO MODELO DE HEISENBERG

Vamos portanto considerar o modelo de Heisenberg com interagao antiferromag-
nética entre primeiros vizinhos na presenca de uma campo magnético externo, descrito
pelo hamiltoniano em Eq. (1.1). Esse é um modelo em que nao temos uma solugao geral,
mesmo a temperatura 7' = 0. Considere o que seria o correspondente estado de Néel como
na Figura (1c). Poderfamos representa-lo como um estado |11 ...). Uma aplicagao direta
do Hamiltoniano mostra que essa proposta natural nem mesmo é um autoestado. Veja
que o espago de Hilbert de um sistema de N particulas com spin 1/2 tem tamanho de
2N e, por isso, é um trabalho muito dificil o de encontrar o espectro de energia. Por esse

motivo, recorremos a solucoes aproximadas.

Vamos fazer uma abordagem semicléssica. Partiremos do limite classico do modelo,
que explicaremos a seguir, obtendo as fases do sistema em func¢ao do campo. Em seguida,
consideraremos corregoes as quantidades calculadas no regime puramente classicos. Isso nos
fornecera estimativas para a resposta propriamente quantica, e por isso as entenderemos

como corregoes quanticas, Ref.(5).

2.1 Limite de S grande

Até o momento tinhamos tratado apenas do caso de operadores de spin 1/2. Existem,
no entanto, alguns mecanismos fisicas que resultam em spins efetivos maiores, geralmente

por acoplamento de spins. E de interesse escrever o hamiltoniano novamente,

7-[:JZSZ?”S;-”—FSZQS?nLSij—h-ZSi, (2.1)

(i)
mas nesse caso considerando o caso geral em que S é a componente p de um operador
de spin S, y = z,y,2. Esses operadores obedecem & algebra [S}', S}] = ih Y, €57,
onde €,,, ¢ simbolo de Levi-Civita. Podemos reescalar os operadores S — S/S para

v Y
obter [S—H S—"} = %z‘hzv %W(%)- Notamos por fim que, no limite S — oo, temos que

58
Sk gy . . .
[?Z, ?} — 0. Ou seja, as componentes do spin comutam entre si, de forma que podemos
trata-las como um componentes de um vetor em trés dimensoes. A esse limite damos o

nome de limite classico do modelo de Heisenberg.

2.1.1 Estado fundamental cldssico

Vamos entao considerar a rede triangular, descrita pelos pontos r = nja; + nsas,
nl,n2 € Z, como na Figura (2a). Em cada sitio vamos ter um vetor S; € R? de tamanho
|S;| = S. Agora, note que podemos reescrever tanto a primeira soma sobre vizinhos quanto

a segunda sobre todos os sitios em somas sobre plaquetas triangulares, de forma que
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Ha

%:Z{‘;[Sl-SﬁSQ-Sﬁsg-sl}—2-[81+82+83}}, (2.2)
AN

onde o indice A denota soma sobre plaquetas, e, digamos, S1, So, S3 denotam os spins de
uma plaqueta. O fator de 1/2 multiplicando J se d& porque cada ligagao (ij) participa de
duas plaquetas. O fator de 1/6 para h se d& porque cada sitio participa de 6 plaquetas.
Denotando Sp = S; + S, + S3 e notando que (Sa)? =352 +2(S;-Sa+S2-S3+ S5+ Sy),

temos

Je . h 3 0 J nl> 3., &
Ho="(88)" = ¢ -Sa—JS —4[SA—3J] — 28— (2.3)

onde h = |h|. A minimiza¢io de Hx se d& zerando o quadrado (Sx —h/3.J)% = 0, desde
que nao seja proibido pela desigualdade triangular. Neste segundo caso, os spins saturam

na direcdo do campo. As condi¢oes de minimizagao sdo, portanto,

SA=h/3J se h/3J <3S,

A (2.4)
Sl :SQZSS = Sh se h/?)JZgS,

para uma plaqueta com spins S, Sy, S3. Essas condigoes sdo necessarias e suficientes. Dessa
forma, temos uma cota inferior para a energia do estado fundamental, Ee > Namin(Ha),
sendo N o ntmero de plaquetas. Agora, note que existem configuragoes de spins onde
cada plaqueta tem exatamente uma tripla de spin que satisfaz os vinculos em Eq.(2.4). Para
isso, basta tomar alguma tripla de spin que obedece as relagoes, digamos S(10)7 Séo), S:go),
bem como uma tripartigdo da rede, como na Figura (2a). Associando univocamente cada
um desses vetores a uma cor (digamos S§°) a preta da figura, Séo) a azul, etc., veja a Figura
(2¢)), o preenchimento da rede dessa forma garante que cada plaqueta triangular tem
exatamente um de cada da tripla. Concluimos, por fim, que o estado fundamental tem
energia Eof = Namin(H ), com configuragoes de spin dadas pelas relagdes em Eq. (2.4)

para cada plaqueta.

2.1.2  Degenerescéncia massiva

Considerando primeiro o caso h = 0, as configuracoes de spin que satisfazem a
Eq.(2.4) tém a propriedade de serem coplanares com angulo entre cada par de spin igual
a 120° (veja Figura (2c¢)). H4 uma degenerescéncia nas configuragoes, que corresponde
a uma rotacao rigida dos spins em torno de um eixo arbitrario, uma vez que preserva
os angulos relativos. Essa é uma degenerescéncia esperada, de acordo com a simetria da
hamiltoniana. Por outro lado, consideremos o caso 0 < h < h,, onde h, = 9J5 é o campo
critico. Vamos decompor os spins S em Sle St as componentes paralelas e perpendiculares
a h, respectivamente. A condi¢gdo de minimizagao fica reescrita como S{I + Sg + S:g =h/3J
e ST+ Sy + S:,f = 0. Tomemos € um versor no plano perpendicular a h, de forma a

escolher S7 na direcio de &. Esta escolha est4 de acordo com a simetria da hamiltoniana de
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rotacdo em torno do eixo h. No entanto, se ¢ e « sao os angulos que 82l e Sé fazem com €,
respectivamente, note que, mesmo que assumissemos que Si- = Sy = S3 (um subconjunto
das solugdes), ainda teriamos a condi¢do 1 + cos ¢ + cosa = 0. A equagao com os dois
angulos tem, portanto, infinitas solucoes, o que se traduz numa degenerescéncia massiva na
configuracao dos spins, degenerescéncia essa que nao podemos mais dizer estar de acordo
com as simetrias da hamiltoniana do modelo. Nesse caso, dizemos que a degenerescéncia é

acidental.

2.2 Ordem por desordem

Dada essa degenerescéncia, vamos investigar a introducao de flutuac¢oes térmicas
no sistema. Apesar do continuo de estados com mesma energia, é possivel que um conjunto
destes tenha, por exemplo, maior entropia que outro. Com essa estratégia que detalharemos
a seguir podemos levantar essa degenerescéncia, isto €, a introducao das flutuagoes atua
efetivamente selecionando um subconjunto dos estados. Esse mecanismo é um exemplo
do que é conhecido como ordem por desordem, Ref.(6-8), onde as flutuagoes levantam a

degenerescéncia acidental do estado fundamental.

2.2.1 Teoria de perturbacao no espaco real: Flutuagoes térmicas

Vamos olhar primeiramente para uma forma geral de teoria de perturbacao termo-
dindmica. Considere um sistema com energia E tal que podemos escrever £ = Fy + V,
onde Fj é a energia do estado fundamental e V' um termo pequeno em relagdo a Ey. A

energia livre do sistema fica dada por (veja Ref.(9))

F=Fy+ (V)= (V) — (v)?) (25)
onde Fj representa a energia livre ndo perturbada, 8 = 1/kgT com Kp a constante de
Boltzmann e T a temperatura do sistema. As quantidades (V') e (V?) representam médias,
com o peso de Gibbs do sistema nao interagente. Muitas vezes a primeira corre¢ao (V')
¢é nula, por exemplo quando estamos considerando pequenas flutua¢ées em torno de um
ponto de minima energia. O segundo termo, §(<V2> - <V>2) = §<(V - (V))2>, representa
flutuacoes, e ressaltamos o fato de que a correcdo a energia livre causada por ele é sempre

negativa.

Para aplicar no sistema de interesse, vamos agora tomar uma configuracao dentre
aquelas do continuo de estados degenerados (vamos nos restringir a configuragoes planares).
Com isso, vamos definir z; o versor apontando na direcdo do spin no sitio ¢ para a particular
configuragao escolhida. Em seguida, para cada ligacao (ij) escolhemos os eixos X; e X;
de forma que pertengam ao plano z; — z;, e y; e y; sao escolhidos perpendiculares a esse
mesmo plano, Figura (3). Com esses novos sistemas de referéncias o estado fundamental

¢ tal que os spin em cada sitio apontam na dire¢ao z; com S7 = S. Consideraremos, no
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Figura 3 — Eixos locais para a configuragao na Figura (2c).
Fonte: Elaborada pelo autor.

entanto, que existam no sistema componentes S* e SY, comparativamente pequenas em
relagdo a S, causadas por flutuagdes. Definindo 6;; = cos™(2; - Z;) e 6; o angulo entre 2; e

h, a hamiltoniana se reescreve como

Ho=J Y |SVSY+(S7S]+57S7) cos O+ (S7S; —S7S7) sin 03] —h Y- [S7 cos 0+ 57 sin 6]
(i7) i

(2.6)

Reescrevendo convenientemente S? = S — (S — S7), a hamiltoniana fica dada por H =

Eq+Ho+V, onde

Eq=J) S%costy —hd Scosb; , Ho=3JS> (S—57)
(ig) i i
V=J7y [Sf’Sjy%—Sfo cos O + (S — S7)(S — S7) cos 05 + (57755 — S;S5) sin 9@} —hY_ SPsinb;,
(ig) i

sendo F é a energia classica do estado fundamental. Para a expressao acima, utilizamos o

fato de que o campo local, definido por hioc =h-J Z; S;, com E;- denotando soma sobre
vizinhos, é proporcional ao spin no sitio, h}ioc = 3J8S, para esse modelo. Vemos que este é o

caso se escrevermos > S; = % >4 [S1 4+ Sy], sendo a tltima soma sobre plaquetas vizinhas.
Usando o vinculo da Eq.(2.4), concluimos que hy =h — 1 5, [h/3J — S;] = 3JS,.

Notamos que H, é diagonal nos sitios, enquanto que os termos que agrupamos sob
o rétulo de V' representam somas sobre diferentes sitios (como iremos discutir a seguir,
a dltima soma Y_; ST cos 0; pode ser descartada). Na linguagem da teoria de perturbagao
delineada acima, vamos tomar H, como a hamiltoniana nao perturbada, e a nossa estratégia
consistird em tratar V perturbativamente com relacao a Hy. Aqui é preciso comentar
que nao exite um parametro pequeno que naturalmente distingue V' de Hy. O método
é, a rigor, uma expansao em 1/z, sendo z o numero de vizinhos da rede, uma vez que
Ho = O(2J), enquanto que V' = O(J). Por outro lado, essa estratégia de tratar o segundo
termo perturbativamente é justificivel do ponto de visto fisico. Vemos que Hg esta de
acordo com uma teoria de campo médio, ja que a contribui¢ao dessa correcao para energia
classica é apenas local no sitio 7. J& os termos em V' representam interagoes das flutuagoes

de diferentes sitios. Lembramos que em uma teoria de campo médio teriamos que os spins
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de sitios diferentes naturalmente se comportam de forma completamente independente e
descorrelacionada, isto ¢, (S{*S}) = (S{*)(S})Vi, j € A com a, pp = x,y, 2. Isso nos leva a
concluir que a correcao principal nesse método esta realmente em Hy, visto que o termo

V representa uma correcao além do campo médio, e logo de ordem superior.

Para o préximo passo vamos ignorar o termo F.j, que é constante para todo o
continuo de estados degenerados. Nesse ponto, o fato de que a perturbagao é sobre um
estado de minimo implica que termos de primeira ordem nas flutuagoes do spin sao nulos
(isto é o equivalente a dizer que o ponto de minimo de uma funcao real tem derivada
nula, mas com a generaliza¢ao natural para um espago de parametro arbitrario). Vamos
agora, de fato, impor que S* e SY sdo pequenas componentes causadas por flutuagoes
térmicas. Considerando o regime kT < JS?, as flutuacoes devem de fato ser pequenas

em comparacao com S, de forma que podemos escrever

512 Sy2
55 25 O(S*4). (2.7)

Dessa forma a hamiltoniana fica reescrita como H = Hg + Vo + V3, onde

8% =+/S2 — S22 _Gy2 =G _

3J 2 2 T QT
H0:7Z{Si —i—Sf’]7 \/2:(];[55"5;’—1-51.5]- cos@z-j}, (2.8)

7 17
e V3 é um termo que depende de S*,SY em terceira ordem, o qual iremos descartar.
Lembrando que Hy esta sendo tomado como hamiltoniana nao perturbada, podemos
calcular o valor médio de qualquer funcao f(S*) das flutuacoes dos spins por

1
(8 o = - [ e (st []ast, (2.9)
0 i
onde Zj é a fungao de particao de Hy. Essas sdo integrais gaussianas, e portanto podemos
: : « k a k 2 «

calcular quantidades de interesse como ((S¢)?) = *2L | ((S)*) = 3(%;) , {(S)2kly =
0,Vk € N com a = z,y Além disso, spins de sitios distintos sdo descorrelacionados,
((S)™ (S = ((SE)y™)((S5)), vy pp =,y # j. Com isso, somos capazes de aplicar uma
teoria de pertubacao termodindmica nos moldes de Eq.(2.5) para obter F = Fj — g(VQ),
onde Fj é a energia livre do estado nao perturbado. Estamos assumindo aqui que (V') =0
(podemos afirmar que esse é o caso porque os desvios, que se dao na forma das componentes
S* e SY, devem ser simétricos em relacdo ao 0 ja que nao ha uma diregao preferencial).
Como V =V, + O(SLS), temos que o termo dominante da perturbacao se encontra por
AF = —5(V2) + O(S*?), e portanto temos

B> :

2 T QT

AF® = —2<<Z le’S;’ + S7'S] cos%]) >
(i5)

Expandindo a expressdo, teremos termos do tipo (S7.SYS}/S/). Primeiramente, se

{i,j} n{k, 1} = @ temos que, como as componentes de spins diferentes sdo descorrelaciona-

das, o termo é equivalente a (SySY)(S/.S/') o que, por sua vez é igual a (S})(SY)(Sy)(S})
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(lembre-se que i # j e k # [ pois estamos somando sobre primeiros vizinhos). Note que
a contribuigao desse termo é nula. Tomemos agora um par (ij) fixo e suponhamos que
k =i, 1 # j. Nesse caso, (S{SYS{SY) = ((S¢)*)(SY)(S/) = 0, novamente. A mesma
conclusao se tira em qualquer um dos casos em que a ligagao (kl) compartilha um, e
somente um, vértice com a ligagao (i7). Por fim vamos considerar o caso em que (ij) = (kl).
Temos entdo que (S7SYSYSY) = ((S7)*(5Y)%) = ((S¥)*)((S¥)*) = (ksT/3J)*. Veja que
esse calculo pode ser estendido naturalmente para contabilizar a média de termos da
forma (S} S7SESY cos b cosO) = (kpT/3.J)% cos® by se (ij) = (kl) e 0 caso contrério.
Outros termos presentes na expansao sao calculados por argumentos similares, da forma

(S7S7SSY) = (SF)(ST)(SP)(S)') = 0. Concluimos entao que

J? (kT
Ap@ = BT (ks 2[1 + cos? 0] (2.10)
2 \ 3] ) &

(4)
Percebendo que mesmo esta primeira corre¢ao nao nula para a energia livre depende do
estado fundamental em funcao da parametrizagao dos angulos 0;;, podemos apreciar a
relativa simplicidade deste método. Para uma generalizacao de como calcular os termos
de ordem superior, veja Ref.(10). Conseguimos o nosso objetivo de calcular uma corregao
para a energia livre, e agora para um sistema com temperatura finita existird uma selecao

entrépica dos estados, sendo necessaria portanto a minimizacao de F'.

2.3 Termo biquadratico

Vamos reescrever a expressao em Eq.(2.10) como F = Fj — % Supll + cos? 0;].
Lembrando que o estado fundamental tem, por definicao, S; = S%;, Vi, temos que S; - S; =
S?% cos 6;;. Notamos que este é o segundo termo que aparece dentro da soma em Eq.(2.10),
a menos de um fator S? e o primeiro termo niao depende da configuraciao de spin (é
constante para todo o continuo de estados degenerados). Esses pontos sugerem a proposta

de um modelo efetivo na rede triangular:
Ha=JY.8i-S;~h-38, - K3 (S:-8,)" (2.11)
(ig) i (i)

onde, como antes, os spins sdo vetores tridimensionais nos sitios. A novidade esta na tltima
soma, —K > (i) (Si . Sj)2 onde K > 0 é uma constante. Chamamos esses termos dentro
da somatoria de termos biquadrdticos. A adicao desse termo pretende simular o efeito da
corregao a energia livre. Agora, quando minimizamos a hamiltoniana em Eq.(2.11) estamos

levando em conta, pela prépria construcao do modelo, as flutuagoes térmicas no sistema.

Com isso, vamos de fato procurar as configuragdes que minimizam a hamiltoniana
)
em Eq.(2.11). Como fizemos antes, aqui ainda podemos reescrever a hamiltoniana como

soma somente sobre as plaquetas triangulares,

h K
H = Z{ Sl So+Ss- Sg‘f‘Sg S ]—6'[Sl+82+83]—2[(S1'82)2+(SQ'83)2+(83'81)2]}‘
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Dessa forma, a existéncia de uma coloracdo da rede triangular com trés cores
garante que podemos minimizar individualmente cada uma das parcelas da soma acima.
Agora, assumindo uma configuragdo planar para os spins, vamos parametrizar os spins
pelos angulos 6; com o campo externo, e escrevemos

2
Hp = J;q[cos(eg — 61) + cos(03 — Oy) + cos(0; — 63)] — g(cos 01 + cos Oy + cos 03)

_KS4

5 [(cos®(By — 61) + cos? (03 — B) + cos? (0, — 63)].

(2.12)

Aqui S é o tamanho do spin. Agora o problema se reduz a minimizacao de uma funcao de
trés variaveis. Usando o software Mathematica podemos determinar os valores de 61,6, e
3 e dessa forma também a configuracao dos spins. Com isso, obtemos a magnetizagao
por sitio m = S(cos#y + cos 6y + cosf3)h/3. Na Figura (4) apresentamos as curvas de

magnetizagao para alguns valores de K.

1.} 2 T
—KS%?/J =0 . )
KS?/J=0.025 m KS2/J:0.15 | m )
KS?/J=0.25 I
0.8} =——Ks?/7=005 08l
—Ks*/J=01

0.6} 0.6} s

o4t M 0.4} |l

01 2 3 4 5 6 7 8 9 10

0N
\
g

m/S

01 23 45678 910
h)JS h/JS
(a) KS?/J < 1/11. (b) KS?/J > 1/11.
Figura 4 — Gréficos da magnetizacao relativa por spin |m|/S em fungdo do campo externo
h para diferentes valores de K. Resultados para a minimizagao de Eq.(2.12) na

rede triangular. Linhas tracejadas indicam saltos ou descontinuidades.
Fonte: Elaborada pelo autor.

Para K = 0 recuperamos o resultado linear discutido anteriormente. Ja para um
K > 0 observamos um surgimento de um platoé de magnetizagdo em m/S = 1/3, de acordo
com os resultados experimentais. A fase de baixos campos magnéticos é denominada de
estado Y, onde, para uma plaqueta, um spin aponta para baixo (i.e., contrario ao campo) e
os outros estao dispostos simetricamente, Figura (4). Com o aumento do campo chegamos,
1)

blates Na regiao do platod, onde tempo uma fase denominada

para um dado valor critico h
de up-up-down(uud), com um spin para baixo e dois para cima. A fase perdura até um
©))

blates quando comega uma fase denominada de fase V', com dois

segundo campo critico h
spins fazendo um angulo # com o campo, e outro com ¢, Figura (4). Por fim, para um
campo hyo 0s spins saturam na diregao do campo, num estado dito polarizado. Essas

conclusoes sao validas principalmente para valores pequenos de K. Para valores mais altos
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desse parametro o sistema apresenta algumas interessantes sutilezas que discutiremos

brevemente a seguir.

2.4 Transicoes de fase

Olhando agora mais atentamente para os graficos na Figura (4), vemos que a partir
de algum valor de K algumas transi¢oes sao descontinuas. Para analisar melhor vamos
fazer uso da teoria de Landau para estudar essas transigoes de fase. Lembramos que agora a
hamiltoniana que estamos tentando minimizar esta fazendo o papel justamente da energia
livre, de forma que a estratégia sera expandir a prépria fungdo H em termos do pardmetro
de ordem, a ser escolhido em cada caso. Vamos primeiro estudar uma teoria geral de como
a mudanca de um parametro pode transformar uma transicao antes de segunda ordem em
uma de primeira ordem. Suponha que a energia livre f fica expandida em funcao de um
parametro de ordem ¢, ao redor do ponto critico, como f — fy = ugd? + usd* + ugd®, onde
fo € o valor da energia livre na fase ordenada e estamos assumindo dois parametros , H,
tais que u; = u;(k, H),i = 2,4, 6, sdo fungoes desses pardmetros (para os casos de interesse,
a hamiltoniana tem simetria de inversao ¢ — —¢, e por isso ja estamos descartando os
termos de ordem ifmpar). Suponha que, para um dado kg, uz(kg,0) < 0, uys(ke, H) > 0, VH,
e vamos aumentar o parametro H. Entdo, o termo de ¢° ndo se faz necessario e teremos
uma transicao de segunda ordem, com o valor critico do parametro H* sendo dado de
forma que uy(kg, H) é positivo para H > H*, que satisfara us(ko, H*) = 0, Figura (5a).
Por outro lado, se uy(kg, H) fica negativo, o termo ug¢°® precisa ser positivo para manter
a estabilidade. Nesse caso, teremos valores de minimo simétricos em relacao a origem,
digamos +¢*. Aumentando o valor de H, vemos que quando a energia livre deste minimo
¢* passa por 0, Figura (5b), temos uma transicio de primeira ordem para o estado
ordenado(11). A discussdo pode ser adaptada para um caso em que a transi¢ao para a
fase ordenada se dd4 com a diminuigao do pardmetro H (ou seja, quando o aumento do

mesmo parametro tira o sistema da fase ordenada).

2.4.1 Transicao do estado Y para o uud

Vamos escrever a hamiltoniana em Eq.(2.12) com a parametrizacao com angulo
0 na Figura (4). Para fazer uso da teoria de Landau tomamos # como pardmetro de
ordem (¢ = 0 na fase uud e ndo nulo na fase ). Expandindo em poténcias de 6 temos
H = JTSQ[u0+u292+u494+u696}, comuy = =144 46k, uy = S—E -6k e ug = —BHIEBE
onde estamos usando, k = KS%/J e H=h/JS e ja descartando termos da ordem O(6®).
Primeiramente para x = 0 note que uy troca de sinal para H = 3. Dado que uy > 0,VH < 3,
segue que essa transicdo seria continua. Agora considere um valor k > 0, mas ainda
suficientemente pequeno. Vamos mostrar que a mesma conclusao se mantém. Nos termos
da discussao acima, us < 0 para H = 0 e troca de sinal para H = 3(1 — 6x). Vemos que se

H < 3(1—6k) entao uy(k, H) =7/12— H/36 —6Kx > 7/12— (1—6K)/12— 6k = (1 —11K)/2
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f f
A A
H > H*

H=H" H = H

H > H*
> ¢ ¢
< H* < H*

(a) uq > 0. (b) usg < 0.

Figura 5 — Ilustracao das curvas de f em funcao de ¢ variando o parametro H.
Fonte: Elaborada pelo autor.

que serd positivo desde que k < 1/11. Dessa forma, ocorrerd a transi¢do de segunda ordem
para H* = 3(1 — 6k), isto &, hslité =3JS(1 — 6KS?/J). Pela discussao acima, vemos que
existe um valor critico k* = 1/11 tal que, para kK > k*, existira algum valor do campo entre

Oe hglité a partir do qual uy < 0. Nesse caso (pode-se verificar que ug > 0) a transicao do
(1)

estado Y para uud serd de primeira ordem, com um valor de campo critico he # hyae-

Notamos ainda que, para valores muito altos de k, pode acontecer de o primeiro
estado ser o uud ao invés do Y. Para determinar o x critico nesse caso, deve valer a
desigualdade Hyua|ln—o < Hy|p=0o <= K > 2/9.

2.4.2 Transicao do estado uud para o V

Olhando para a Figura (4) parece ser o caso que essa transi¢do é sempre continua.
Tomando a parametrizagdo 6 como na Figura (4), e usando o fato de que existe o vinculo

sin @ = 2sinf para o estado V', expandimos a hamiltoniana em Eq.(2.12) em funcao do

pardmetro de ordem 0 como H = ‘?[(—1—?—3&) + (1—?—1—2;@)92—1— (fg—lgé{—i—

plato
note que H < H* = uy(k, H) > 23/12 —17(1+2k) /124 10x/3 = (1 + k) /2. Dessa forma,
como temos que x > 0 sempre, uyg > 0. Assim, teremos sempre uma transigdo de segunda
ordem com valor critico b2, = 3JS(1 + 2K 52/.J).

platd

12“) 941 +0O(6°). Vemos que usy(k, p{) ) > 0 e hé a troca de sinal para H* = 3(1+2k).Agora

2.4.3 Transicao do estado V para o estado polarizado

Uma andlise analoga ao que fizemos na secao 2.4.2, tomando um parametro de

ordem adequado e retendo até a sexta poténcia, revelara a mesma natureza da transicao.
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Para k < k*, a transigao é continua com h,q = 9JS(1 — 2K 5?/J). Curiosamente, o valor

critico também é k* = 1/11. Para k > 1/11 teremos uma transicdo descontinua.

Ha ainda a possibilidade, para valores suficientemente grandes de K, da supressao
da fase V', com um transicao direta da fase uud para a fase polarizada. Isso se d4 quando

HV|h:h(21) > %pol|h:h(?) — Kk >1/2.
plato plato

Podemos generalizar toda essa discussao para afirmar que modelos com termo de
troca biquadratico terdao a tendéncia de ter transicoes de fase descontinuas no regime de k
alto. Nesse limite, o termo biquadréatico é dominante e forca os spins em configuracoes
paralelas ou antiparalelas, resultando efetivamente num modelo do tipo Ising. Devemos,
no entanto, ter cuidado sobre a validade de tais resultados quando, como é o caso aqui, a
introducao do termo biquadratico simula pequenas pertubagoes, uma vez que, por obvio,

a teoria de perturbacoes desenvolvida deixa de ser confidvel no limite k > 1 <= T > 1.
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3 FORMALISMO DE ONDAS DE SPIN

Estamos interessados agora em sair do limite classico, onde tratamos os spins como
vetores tridimensionais, e olhar para o modelo de Heisenberg em sua forma quéantica.
Vamos portanto considerar uma rede triangular de N sitios e vamos definir o hamiltoniano
como em Eq.(1.1), com interagao de troca antiferromagnética entre primeiros vizinhos e
com acoplamento Zeeman de um campo externo h = hz. Os spins S; sdo operadores de

spin S nos sitios .

Como discutido no capitulo anterior, nés propusemos uma mecanismo de levanta-
mento da degenerescéncia acidental. Vamos mostrar logo a seguir que precisaremos usar
parametrizagoes de configuracoes de spins. A proposta é, portanto, que, para cada valor
de campo magnético h, a configuragdo que escolheremos é aquela que corresponde a fase
selecionada pelas flutuacoes cléssica no limite K — 07. Em outros termos, as fases que
usaremos sao a fases Y para h < 0 < 3JS, uud para h = 3JS, V para 3JS < h <9JS, e
polarizada para h > 9JS.

Dito isso, para um valor de campo h, seja {S;};—12,. n conforme essa prescrigao

que propomos. Definamos eixos locais como feito em Eq.(2.6), onde 6; é dngulo entre 2;
s, . . . /

e o campo magnético h. Vamos introduzir um conjunto de novos operadores S, S, S?

definido em analogia com o estado fundamental classico, da forma

S¥ = cos0;S; —sin6; 57, SV =5V | S¥ =sinb,S7 + cosh;S;. (3.1)

Com isso, vamos definir os operadores 7, = S — S?’, que representam os des-
vios de spins. Definimos também |n/,n,...nY\) os autoestados de 7}, que satisfazem
niny,ny...nly) = ni|nj,nh...nly), Vi. Aqui fica claro que a motivagao da construgao
de eixos locais é que a configuracao classica de spin corresponde ao estado em que
n;, = 0,Vi, ou seja, estado com S = S. Introduzimos entao os familiares operadores
de criacao e aniquilagdo, definidos por aj l.oonl4+1,...) = /nf+1]...n,+1,...) |

ail...,n,+1,...) =/n}|...,ni —1,...). Esses sdo operadores bosonicos, isto é, obede-
cem as regras de comutacio [a), a;] = 0y e [as, a;] = [a], a}] = 0. Sendo SF' = S¥ +iSY,

introduzimos o que é conhecido como transformagoes de Holstein-Primakoff, Ref.(12),

dadas por
T

1/2 1/2
S¥ =S —ala, , St= \/25(1 - “Z“") a , S~ =+28d (1 - “’T“i> (3.2)
7 17 ) 1 23 7 ) 7 1 25« . .

Fica claro entao a interpretacao fisica da nossa construgao. Tomamos como “vacuo”

da teoria o estado que representa o estado fundamental classico, que nesse caso é com
T

todos os spins S* valendo S. Com isso o operador de criacdo a; tem o papel de criar
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excitagoes S7 — S7 — 1, que aqui sao exatamente os desvios dos spins — os operadores a;
tém, portanto, o papel contrario. Uma vez criada essa excitagao (note que podemos pensar
que criamos bésons no sitio i), os termos ST e S~ na hamiltoniana sdo responséveis por
fazer um “hopping” desta na rede, isto é, os operadores atuam no sentido de transferir a
excitagao para os vizinhos, ocasionando um deslocamento do béson pela rede. Chamamos

de onda de spin esse transporte da excitacao magnética pela rede.

Com isso posto, escrevemos portanto o hamiltoniano em funcao dos novos operadores
bosonicos, substituindo Eq.(3.2) e as inversas de Eq.(3.1) em Eq.(1.1). Para que possamos
fazer avancgo, vamos expandir as expressoes em poténcias de aiai /25, S = V2Sa; +0(a?),
S =/28al + O(a?). Assim,

S
H=J> { cos(6; —6,) lSQ - S(ajai + a}aj) + §(aiaj +ala; + a}ai + a}a})]
(i)
S

— §(aiaj — a;-raj — aia} + aj-a;-) +sin(f; — 6,)Sv2S [aj + a; — (ai + aj-)] } (3.3)

- hz {(S - agag) cos 6; + \/E(@i + aj) sinez} + O(a?).

Isso nos fornece uma série de poténcia em 1/, de forma que podemos agrupar
os termos na forma H = >°° ;5% 3H, (para ser preciso, devemos reescalar o campo
magnético por J.S). Notamos que o termo da ordem de S?, S*Hy = J 3 ;5 S* cos(6; — 0;) —
J—hSJ 2. 52 cos b;, representa a energia clissica. Temos também termos da ordem de Sv/S,
que contém os operadores a e a' em primeira ordem. Eles representam o 1, e se anulardo
no calculo de médias para expansao ao redor do estado fundamental classico, como aqui
é o caso. Temos também os termos da ordem de S, que contém termos quadraticos
de operadores a,a’, representando o H,. Esses sdo o que entendemos como flutuacoes
quanticas. O préximo passo sera descartar os termos da ordem de O(a?). Essa aproximacio
se justifica desde que estejamos num regime dito diluido, quando (ala;/25) < 1. Se
entendermos fisicamente o significado dessa média, podemos argumentar a razoabilidade
da aproximagcao. Relembrando o espirito do método semiclassico aqui adotado, essa média
representa uma medida das flutuagoes quanticas, isto ¢, indica o quanto o estado verdadeiro
(ou seja, tratando puramente quanticamente) dista do estado que corresponde ao estado
fundamental classico. Um argumento, portanto, para descartarmos a priori os termos
de ordem superiores, é o relativo sucesso da descricao puramente cléssica. Uma vez que
os estados classicos descrevem em alguma medida o fendmeno do plato, esperamos que
as flutuacoes representem uma correcao. A expectativa de sucesso aqui também esta
embasada, por outro lado, no sucesso do mesmo método em outros casos, como por
exemplo em Ref.(13,14). Apesar disso, em ultima andlise o mérito da aproximacao tem de

ser julgado a posteriori.
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3.1 Transformacées de Bogoliubov

O hamiltoniano em Eq.(3.3) esta escrito em grande generalidade. Vamos usar agora
as parametrizagoes particulares 6;,7 = 1,2,3... N dos spins para cada configuragao dos
estados fundamentais classicos. Nesses casos, a rede sempre esta divida em trés sub-redes
de tal forma que as orientacdes dos spins pertencentes a uma mesma sub-rede sao iguais.
Por isso, todo angulo pode ser identificado com um dentre trés angulos 6, u = 1,2, 3,
um para cada sub-rede. Adicionamos o indice i nos operadores a; para indicar a sua
sub-rede. O nosso objetivo agora é de diagonalizar este hamiltoniano. Aqui faz-se 1til tomar
ik

a transformada de Fourier, ay, = ﬁ Yie N ay,, a;, = \/% >k eik'”aku. Substituindo,

poderemos agrupar os termos na forma
2 - i 1 Pt
H=S5"Ho+ ; Zl Ay ay,ax, + §(Bﬁ Ay, Oy, + H.c.), (3.4)
pv=

onde H.c. denota o hermitiano conjugado. Os coeficientes A}” e B,” dependem da parame-

trizacao da configuracao de spins. Explicitamente, identificamos para o nosso caso

A D wnH 0 %E wl
Ax=|nwD B xF| ., Be=|[nE 0 %G|, (3.5)
wH wt O Nl wG 0

onde v = e'kar feikas 4 gik(-ai+az) o a; a, como dados na Figura (2a), e os coeficientes

)

0 1 10— 1
A= -3JS(cosb o +cosby3) +hcosty , D= JS(COSI;JF) , B= JS(COSI;)
0 1 Oy — 1
B = —375(c036,5 + c050s) + hoosly | F:JS@OSZM | G:JS@M;)
C:—3SJ(C080273+COS€371>+hCOSQ3 , H:JSW , I:JS<C08932’1_1>
sendo 6;; = 6; — 0;. O que obtemos na Eq.(3.4) recai na classe de hamiltonianos

bosbnicos quadraticos, cujo a diagonalizagao ¢ um problema sabidamente resolvido
(Ref.(15)) pelo que é conhecido como transformagoes de Bogoliubov. No nosso caso,
buscamos uma diagonalizagdo ja no espaco de momentos. Em particular, definindo
ax = (akl,akg,akg,aikl,aim,aT_kg)T, busca-se uma transformagao Sy = Tygay, com
bx = (bx1, bz, bis, bT_kl, bT_kQ, bT_kg)T de tal forma que os novos operadores by, sao também
bosonicos. Uma transformagao desse tipo que ao mesmo tempo resulta s6 em termos da

forma bLubku é o que conhecemos como transformacao de Bogoliubov. Aplicando neste
caso, obtemos (Ref.(16))

3
H = SzEeﬁo + SEeﬁl + S Z Z EkaLubkM> com Feq =
k

p=1

Z (Z Ekﬂ — Tl"Ak), (36)

k

DN | —

onde Tr denota o trago e ey, sao autovalores obtidos na diagonalizagao. Temos portanto

uma correcao para a energia de estado fundamental, e vamos tomar como estimativa

Y

Y
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da energia Fq = S 2Eef,0 + SEe1, onde o segundo termo representa o que chamamos de
correcao de ponto zero. Note que para obter a energia de fato do estado fundamental
deveriamos somar todos os termos da série, e por isso a expressao anterior fornece apenas

uma aproximacao.

3.2 Comparacao de energias

Com o resultado final da secdo anterior, vamos propor o critério para selecio
das fases nesse esquema semiclassico. Tomando as fases classicas como ponto de partida,

decidiremos como a fase do sistema aquela que tem a menor energia Fo = S 2Eef,0 + SEet1.

Vamos portanto fornecer explicitamente as parametrizagoes das configuragoes de
spins para cada regime de campo magnético. Por exemplo, para a fase Y, ie., 0 < h < 3JS,
tomamos a condi¢gdo de minimizagdo da hamiltoniana cléssica em Eq.(2.4) mas agora
sujeita ao vinculo 63 = —0) e 0Y = 7, que resulta em 63 = —0) = cos™! [(3JS—|—h)/6JS}.
Para a fase wud, ¢ = 7, 3¢ = g»d = (. Para a fase Vie., 3JS < h < 9JS,
temos o vinculo , = 3. A condigdo na Eq.(2.4) na direcdo perpendicular ao campo
resulta em 2sin 0 + sin f,=0. Dessa forma, temos 0} = — cos™* [(—27J252 + h2)/6hJS] e
05" = 05" = cos™! [(27.725% + h?) /12hJ ).

Com cada uma das parametrizacoes, aplicamos a diagonalizagdao com as transfor-
magoes de Bogoliubov usando o software Mathematica para os momentos k na primeira

zona de Brillouin. As energias para valores de campo estdao apresentados na Figura (6) a

seguir.
0-F —_— Lt —gs=1y2
v 325
g |T52Tm=~o —glgs]s)lm 0.8 -==5=0c0
LS I S v 06}
Q 1. \\\ E
R | \\\ 0.4+t
N pr
\\\ 0.2+ /
—6. (1200 4296 4,3 4304 308 L L L \ L 0. ke~ /. L L L L L L L L .
o 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 10
h/JS h/Js

(a) (b)

Figura 6 — (a)Energia Eef = S?Eerg+ S Fer1, com S = 1/2 para as diferentes fases. A curva
pontilhada vermelha representa a energia cldssica, S? Eero; (b)Magnetizacao
em func¢ao do campo para diferentes valores de tamanho do spin obtido com o
método variacional.
Fonte: Elaborada pelo autor.

Um ponto que enfatizamos é que aqui s6 fazemos o calculo tomando a parametriza-

¢ao de uma dada fase no intervalo de valores de campo em que ela é a fase selecionada pelas
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flutuacoes. Por isso, a rigor s6 temos a correcao de ponto zero para a energia do estado uud
exatamente no ponto h = 3JS. Para comparar a energia, no entanto, precisamos comparar
o resultado em faixas de valores de campos. Por isso, para o calculo da energia do estado
uud, fizemos uma extrapolagdo linear. A energia do estado fundamental, podemos provar,

¢ dada por E"(h) = E"4(3J5) — 85(h — 3J5). Aqui obtemos o coeficiente angular pelo

1 OFgs
N Oh

a NS/3. Nao é sempre verdade que a magnetizagao, para uma fase arbitraria, é igual a

fato de que a magnetizacao é definida por m = e a magnetizacao classica ¢é igual
magnetizagao classica, isso porque, da mesma forma que a energia sofre uma corregao de
ponto zero, o spin local sofre uma reducio no seu tamanho, (S7) = S — (ala;). Acontece
de ser o caso que, para configuragoes colineares com o campo, como € o caso do estado

uud, a magnetizagao é conservada (esse resultado vale inclusive considerando todas ordens
de S, Ref.(17)).

Por fim, comparando as energias como na Figura (6), vemos que, para valores
baixos de campo, a fase com menor energia é ainda a Y. Existird uma faixa de campos
magnéticos, digamos h; < h < hy em que a fase de menor energia é a uud. Para valores
relativamente altos de campo temos que a fase V' é selecionada. Por tultimo, a fase de
menor energia é a completamente saturado (um resultado geral da teoria de ondas de spin
é de que, dado que o estado polarizado é, de fato, um autoestado do hamiltoniano, podera
se concluir que a transicao para o estado polarizado se da com campo critico h. = 9J.S,

valor igual ao resultado classico)

Chegamos portanto numa explicacao semiclassica do mecanismo de surgimento do
platd de magnetizacao. Naquela faixa entre hy e hy a fase do sistema é, de fato, a wud, e

um grafico de magnetizagao em fungao do campo revelaria o plato de 1/3.

3.3 Método variacional

Apesar de produzir resultados qualitativamente bons, fazer a extrapolacao linear
somente para o estado uud e ndo para as outras fases produz resultados que nao estao de
acordo com outros mais bem estabelecidos, como por exemplo Ref.(18). Note inclusive
que, como a energia em funcao do campo sera dada pela composicao das curvas de energia
(energia da fase Y para h < hj, energia da wud para hy < h < hg, etc.), as transi¢oes
de fase teriam descontinuidades na magnetizagao, uma vez que a curva de energia teria

descontinuidades na derivada.

Para melhorar a acuracia da nossa descri¢ao, seguimos aqui o método variacional
como proposto em Ref.(17). Seja |¢g) o estado fundamental proposto (i.e. o vicuo dos
operadores b;) para o hamiltoniano quadratico tomando a parametrizagao do estado
classicamente estavel (i.e., de menor energia) no campo h = hg. Entao, a energia variacional
¢ definida como Ey = (¢g| H(ho) |po) — (h— ho) {¢o| 35 S? |¢0). Uma nova curva de energia

E é obtida comparando, para um dado campo h, as energias extrapoladas de todas as
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estruturas e para todos os campo, E(h) = hrr%in ( {(po| H(ho) | o) —(h—ho) (¢o| >=; SF |Po) )

A justificativa desse método ¢ de mimicar os efeitos de termos de ordem superiores da
série em 1/5 que, pode-se demonstrar, tém o papel de renormalizar a configuragao classica
de spins. Como tomamos um minimo sobre todas as fases e campos hg, permite-se que
a fase escolhida em um campo h seja uma que nao é aquela estabilizada classicamente.
Pode-se mostrar que campo hgy que satisfaz a minimizacao é tal que h — hy é da ordem de
1/S. Por isso, para uma correcao total da ordem de 1/S ¢é suficiente reter s6 a contribuigao
classica de (¢o| X=; S? |¢o). Fizemos, portanto, a minimizagdo numérica usando o sofware
1 90FE

Mathematica e, com essa energia variacional E, obtemos, a partir de m = — 437, a curva

de magnetizagdo na Figura (6b).

Temos entao o resultado do platé de magnetizagdo em 1/3 da magnetizagao de
polarizacao. Veja que a largura do plato decresce com o tamanho do spin, conforme
esperado, uma vez que a flutuagdo é parametrizado por 1/5, e recuperamos o resultado
classico no limite S — oco. O resultado obtido tem boa concordancia com simulagoes

numéricas, Ref. (19,20), e resultados de experimentos, Ref. (21-24).



25

4 CONCLUSAO

Sumarizando todos os passos desenvolvidos até aqui, comecamos ilustrando a relacao
entre frustracdo magnética e degenerescéncia. Em particular, para o caso do modelo de
Heisenberg Cléassico na rede triangular temos uma degenerescéncia acidental massiva no
estado fundamental. Precisamente nesse ponto fazem-se muito relevantes as flutuacoes no
sistema. Ilustramos o efeito de flutuagoes térmicas, em particular por meio de uma teoria
de perturbacao no espaco real. Isso fornece um exemplo do que é conhecido como ordem
por desordem, onde a introducao dessas flutuagées atuam como um mecanismo além
do campo médio e levantam a degenerescéncia acidental. Este ¢ um tipo de mecanismo

bastante geral, com aplicagao em varios outros sistemas frustrados.

Feita essa discussao, fizemos uso do formalismo de ondas de spin, tomando como
base as fases classicamente selecionadas. Essa é uma abordagem semiclassica, comparamos
as energias incluindo as corre¢des quanticas e propomos como critério a selecao da fase de
menor energia. Com isso demonstramos a existéncia, pela menos de forma qualitativa, do
platé de magnetizagdo em uma faixa de valores de campo. Por fim, aplicamos um método
variacional que d& uma concordancia quantitativa para o platé de magnetizagao. Como
ilustrado na Figura 6b, o tamanho do platé depende do tamanho do spins S, e, no limite

classico, S — 00, recuperamos o comportamento linear classico.

Esse exemplo para a rede triangular aqui descrito pode ser generalizado para fornecer
um roteiro de como estudar o fenémeno de platos de magnetizacao, algo que encontra
aplicacdo em outros sistemas frustrados e tem chamado bastante atencao recentemente(25).
Uma possivel dire¢ao futura de pesquisa seria investigar o comportamento do modelo de
Heisenberg no que é conhecido como rede de Kagomé, uma rede bidimensional formada por
tridngulos que compartilham vértices, sendo muito frustrada. Estudos numéricos (26-28)
indicaram a existéncia de um platé de magnetizacao de 1/3 da magnetizacao do estado
polarizado, e resultados experimentais para altos campos magnéticos confirmaram sua
presenca em alguns materiais reais(4,29). Fica entdo a pergunta, podemos seguir a receita
aqui proposta e explicar de forma semiclassica esse plato? Essas e outras questoes tornam
fascinante o estudo dos magnetos frustrados, e que buscaremos responder em um futuro

préximo.
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